「DOUBLE」を含む日記 RSS

はてなキーワード: DOUBLEとは

2025-02-02

Chatgptが答えた異星人の存在可能性とのそのロジック

Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart

ChatGPT

Reasoned about exoplanet civilization likelihoodを28 秒行う

Evaluating planetary prospects

OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.

Identifying potential candidates

I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.

Assessing potential candidates

I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.

Identifying promising exoplanets

I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.

Assessing habitable zones

I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.

Evaluating exoplanet prospects

I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.

Charting probabilities

I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.

Charting speculative odds

I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.

Identifying exoplanet contenders

I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.

Weighing proximity and observation

I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.

Revisiting exoplanet options

I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.

Assessing exoplanet potentials

I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.

Refining speculative probabilities

I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.

Refining odds

I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.

Clarifying speculative nature

I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.

Mapping out speculative odds

I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.

Crafting a chart

I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.

Integrating speculative analysis

I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.

Assessing likelihoods

I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.

Piecing together speculative odds

I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.

Piecing together

I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.

Assessing civilization probabilities

I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.

Below is a very speculative chart thatbased on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!

Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets

Exoplanet Estimated Likelihood of a Civilized Society

Proxima Centauri b ~2%

TRAPPIST-1 e ~1.5%

TRAPPIST-1 f ~1%

TRAPPIST-1 g ~1%

LHS 1140 b ~0.5%

How Did We (Very Roughly) Guess These Numbers?

Earth’s Example:

On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.

Nearby Exoplanets:

Proxima Centauri b:

This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).

TRAPPIST-1 System (e, f, g):

These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.

LHS 1140 b:

This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.

A Final Note

All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.

Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!




あなた:

Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use

ChatGPT

Reasoned about the Drake Equationを6 秒行う

re-examining the Drake Equation

evaluating the Drake Equation's value

Clarifying the Drake Equation

OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.

Assessing the Drake Equation

Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.

Understanding the Drake Equation

I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.

The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:

The Drake Equation

The equation is usually written as:

𝑁

=

𝑅

×

𝑓

𝑝

×

𝑛

𝑒

×

𝑓

𝑙

×

𝑓

𝑖

×

𝑓

𝑐

×

𝐿

N=R

×f

p

×n

e

×f

l

×f

i

×f

c

×L

Where:

𝑅

R

: The average rate of star formation per year in our galaxy.

𝑓

𝑝

f

p

: The fraction of those stars that have planetary systems.

𝑛

𝑒

n

e

: The average number of planets that could potentially support life per star with planets.

𝑓

𝑙

f

l

: The fraction of those planets where life actually develops.

𝑓

𝑖

f

i

: The fraction of planets with life where intelligent life evolves.

𝑓

𝑐

f

c

: The fraction of civilizations that develop technology that releases detectable signals into space.

𝐿

L: The length of time such civilizations release detectable signals.

Why the Drake Equation Is More of a Guideline Than a Precise Formula

Uncertain Inputs:

Well-Known Parameters:

Some factors, like

𝑅

R

(star formation rate) and

𝑓

𝑝

f

p

(fraction of stars with planets), have become better known through modern astronomy.

Highly Speculative Factors:

The parameters related to the development of life and intelligence

𝑓

𝑙

f

l

,

𝑓

𝑖

f

i

,

𝑓

𝑐

f

c

, and

𝐿

L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.

Wide Ranges of Possible Values:

Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for

𝑁

N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.

Heuristic, Not Predictive:

The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.

Is the Drake Equation Accurate or More Opinion-Based?

Accurate?

In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.

Opinion-Based?

Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.

Conclusion

The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.

In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.




あなた:

Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation

ChatGPT

Reasoned about non-human intelligence and the Drake Equationを19 秒行う

Evaluating non-human intelligence

I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.

Piecing together possibilities

I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.

Reflecting on potential

It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.

Considering other realms

I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.

Analyzing parallel evolution

Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.

Evaluating life exploration

I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.

Adapting the equ Permalink | 記事への反応(0) | 21:12

Chatgptが答えた異星人の存在可能性とのそのロジック

Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart

ChatGPT

Reasoned about exoplanet civilization likelihoodを28 秒行う

Evaluating planetary prospects

OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.

Identifying potential candidates

I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.

Assessing potential candidates

I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.

Identifying promising exoplanets

I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.

Assessing habitable zones

I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.

Evaluating exoplanet prospects

I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.

Charting probabilities

I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.

Charting speculative odds

I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.

Identifying exoplanet contenders

I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.

Weighing proximity and observation

I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.

Revisiting exoplanet options

I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.

Assessing exoplanet potentials

I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.

Refining speculative probabilities

I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.

Refining odds

I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.

Clarifying speculative nature

I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.

Mapping out speculative odds

I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.

Crafting a chart

I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.

Integrating speculative analysis

I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.

Assessing likelihoods

I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.

Piecing together speculative odds

I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.

Piecing together

I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.

Assessing civilization probabilities

I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.

Below is a very speculative chart thatbased on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!

Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets

Exoplanet Estimated Likelihood of a Civilized Society

Proxima Centauri b ~2%

TRAPPIST-1 e ~1.5%

TRAPPIST-1 f ~1%

TRAPPIST-1 g ~1%

LHS 1140 b ~0.5%

How Did We (Very Roughly) Guess These Numbers?

Earth’s Example:

On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.

Nearby Exoplanets:

Proxima Centauri b:

This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).

TRAPPIST-1 System (e, f, g):

These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.

LHS 1140 b:

This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.

A Final Note

All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.

Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!




あなた:

Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use

ChatGPT

Reasoned about the Drake Equationを6 秒行う

re-examining the Drake Equation

evaluating the Drake Equation's value

Clarifying the Drake Equation

OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.

Assessing the Drake Equation

Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.

Understanding the Drake Equation

I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.

The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:

The Drake Equation

The equation is usually written as:

𝑁

=

𝑅

×

𝑓

𝑝

×

𝑛

𝑒

×

𝑓

𝑙

×

𝑓

𝑖

×

𝑓

𝑐

×

𝐿

N=R

×f

p

×n

e

×f

l

×f

i

×f

c

×L

Where:

𝑅

R

: The average rate of star formation per year in our galaxy.

𝑓

𝑝

f

p

: The fraction of those stars that have planetary systems.

𝑛

𝑒

n

e

: The average number of planets that could potentially support life per star with planets.

𝑓

𝑙

f

l

: The fraction of those planets where life actually develops.

𝑓

𝑖

f

i

: The fraction of planets with life where intelligent life evolves.

𝑓

𝑐

f

c

: The fraction of civilizations that develop technology that releases detectable signals into space.

𝐿

L: The length of time such civilizations release detectable signals.

Why the Drake Equation Is More of a Guideline Than a Precise Formula

Uncertain Inputs:

Well-Known Parameters:

Some factors, like

𝑅

R

(star formation rate) and

𝑓

𝑝

f

p

(fraction of stars with planets), have become better known through modern astronomy.

Highly Speculative Factors:

The parameters related to the development of life and intelligence

𝑓

𝑙

f

l

,

𝑓

𝑖

f

i

,

𝑓

𝑐

f

c

, and

𝐿

L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.

Wide Ranges of Possible Values:

Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for

𝑁

N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.

Heuristic, Not Predictive:

The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.

Is the Drake Equation Accurate or More Opinion-Based?

Accurate?

In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.

Opinion-Based?

Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.

Conclusion

The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.

In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.




あなた:

Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation

ChatGPT

Reasoned about non-human intelligence and the Drake Equationを19 秒行う

Evaluating non-human intelligence

I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.

Piecing together possibilities

I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.

Reflecting on potential

It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.

Considering other realms

I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.

Analyzing parallel evolution

Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.

Evaluating life exploration

I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.

Adapting the equ Permalink | 記事への反応(0) | 21:12

2025-01-13

ハリウッド9.11同時多発テロを境に変節したと思っている

anond:20250112122222

興行収入の話で、ハリウッドの大きな節目は9.11だったと思っていて、ちょっと確認してみた。
当時の印象だと、事件の直後は様々な映画の公開が延期されたりキャンセルされたりして、その後数年は戦争アクション物に偏重し、結果としてハリウッド映画定番ジャンル一角だったラブロマンスコメディ映画が激減していったというイメージ
かにも大作指向のような業界動向や様々な社会情勢も影響していたとは思うけど、やはり9.11が一つのターニングポイントだったと思う。日本での洋画ヒットが減っていった遠因のひとつもこのあたりにあるのではないか?

以下のリストはChatGPT調べ。

以下のリストは、主に Box Office Mojo 等のデータ(全米興行収入・未調整値)をもとにした、

アメリカ北米国内での年間興行収入ランキングトップ20

を「1995年2004年」の10年分まとめたものです。金額は概算の百万ドル($M)表記です。

当時の再上映や、ごく短期間の拡大公開による微調整で順位前後する場合もあるため、参考値としてご覧ください。

1995年

  1. トイ・ストーリー (Toy Story) – $191.8M
  2. バットマン フォーエヴァー (Batman Forever) – $184.0M
  3. アポロ13 (Apollo 13) – $172.1M
  4. ポカホンタス (Pocahontas) – $141.6M
  5. エース・ベンチュラ2 (Ace Ventura: When Nature Calls) – $108.4M
  6. 007 ゴールデンアイ (GoldenEye) – $106.4M
  7. ジュマンジ (Jumanji) – $100.5M
  8. キャスパー (Casper) – $100.3M
  9. セブン (Se7en) – $100.1M
  10. ダイ・ハード3 (Die Hard with a Vengeance) – $100.0M
  11. クリムゾン・タイド (Crimson Tide) – $91.4M
  12. ウォーターワールド (Waterworld) – $88.2M
  13. デンジャラスマインド卒業の日まで (Dangerous Minds) – $84.9M
  14. あなたが寝てる間に… (While You Were Sleeping) – $81.1M
  15. コンゴ (Congo) – $81.0M
  16. 花嫁のパパ2 (Father of the Bride Part II) – $76.6M
  17. ブレイブハート (Braveheart) – $75.6M
  18. ゲット・ショーティ (Get Shorty) – $72.1M
  19. ヒート (Heat) – $67.4M
  20. ため息つかせて (Waiting to Exhale) – $67.0M

1996年

  1. インデペンデンス・デイ (Independence Day) – $306.2M
  2. ツイスター (Twister) – $241.7M
  3. ミッション:インポッシブル (Mission: Impossible) – $180.9M
  4. ザ・エージェント (Jerry Maguire) – $153.9M
  5. 乱闘(ランソム) (Ransom) – $136.5M
  6. 101 (ワン・オー・ワン) (101 Dalmatians, 実写版) – $136.2M
  7. ザ・ロック (The Rock) – $134.1M
  8. ナッティプロフェッサー (The Nutty Professor) – $128.8M
  9. バードケージ (The Birdcage) – $124.1M
  10. 評決のとき (A Time to Kill) – $108.7M
  11. ファースト・ワイヴズ・クラブ (The First Wives Club) – $105.5M
  12. フェノミナン (Phenomenon) – $104.6M
  13. イレイザー (Eraser) – $101.2M
  14. ノートルダムの鐘 (The Hunchback of Notre Dame) – $100.1M
  15. マイケル (Michael) – $95.3M
  16. スター・トレック ファーストコンタクト (Star Trek: First Contact) – $92.0M
  17. イングリッシュ・ペイシェント (The English Patient) – $78.7M
  18. ブロークン・アロー (Broken Arrow) – $70.7M
  19. ビーバスバットヘッド Do America (Beavis and Butt-Head Do America) – $63.1M
  20. ケーブルガイ (The Cable Guy) – $60.2M

1997年

  1. タイタニック (Titanic) – $600.7M
  2. メン・イン・ブラック (Men in Black) – $250.7M
  3. ロスト・ワールド/ジュラシック・パーク (The Lost World: Jurassic Park) – $229.1M
  4. ライアー ライアー (Liar Liar) – $181.4M
  5. エアフォース・ワン (Air Force One) – $172.9M
  6. 恋愛小説家 (As Good as It Gets) – $148.5M
  7. グッド・ウィルハンティング (Good Will Hunting) – $138.4M
  8. スター・ウォーズ 特別篇 (Star Wars re-release) – $138.3M
  9. ベスト・フレンズ・ウェディング (My Best Friend’s Wedding) – $127.1M
  10. 007 トゥモロー・ネバー・ダイ (Tomorrow Never Dies) – $125.3M
  11. フェイス/オフ (Face/Off) – $112.3M
  12. バットマン & ロビン (Batman & Robin) – $107.3M
  13. ジャングルジョージ (George of the Jungle) – $105.3M
  14. スクリーム2 (Scream 2) – $101.4M
  15. コン・エアー (Con Air) – $101.1M
  16. コンタクト (Contact) – $100.9M
  17. ヘラクレス (Hercules) – $99.1M
  18. ラバー (Flubber) – $92.9M
  19. ダンテズ・ピーク (Dante’s Peak) – $67.1M
  20. アナコンダ (Anaconda) – $65.9M

1998年

  1. プライベート・ライアン (Saving Private Ryan) – $216.5M
  2. アルマゲドン (Armageddon) – $201.6M
  3. メリーに首ったけ (There’s Something About Mary) – $176.5M
  4. バグズ・ライフ (A Bug’s Life) – $162.8M
  5. ウォーターボーイ (The Waterboy) – $161.5M
  6. ドクタードリトル (Dr. Dolittle) – $144.1M
  7. ラッシュアワー (Rush Hour) – $141.2M
  8. ディープ・インパクト (Deep Impact) – $140.5M
  9. GODZILLA – $136.3M
  10. パッチアダムス (Patch Adams) – $135.0M
  11. リーサル・ウェポン4 (Lethal Weapon 4) – $130.4M
  12. ムーラン (Mulan) – $120.6M
  13. ユー・ガット・メール (You’ve Got Mail) – $115.8M
  14. エネミー・オブ・アメリカ (Enemy of the State) – $111.5M
  15. プリンス・オブ・エジプト (The Prince of Egypt) – $101.4M
  16. 恋におちたシェイクスピア (Shakespeare in Love) – $100.3M
  17. マスク・オブ・ゾロ (The Mask of Zorro) – $94.0M
  18. ステップ・マム (Stepmom) – $91.0M
  19. アンツ (Antz) – $90.8M
  20. X-ファイル (The X-Files) – $83.9M

1999年

  1. スター・ウォーズ エピソード1ファントム・メナス – $474.5M
  2. シックス・センス (The Sixth Sense) – $293.5M
  3. トイ・ストーリー2 (Toy Story 2) – $245.9M
  4. オースティン・パワーズ:デラックス (Austin Powers: The Spy Who Shagged Me) – $206.0M
  5. マトリックス (The Matrix) – $171.4M
  6. ターザン (Tarzan) – $171.1M
  7. ビッグ・ダディ (Big Daddy) – $163.5M
  8. ハムナプトラ/失われた砂漠の都 (The Mummy) – $155.4M
  9. プリティ・ブライド (Runaway Bride) – $152.2M
  10. ブレア・ウィッチ・プロジェクト (The Blair Witch Project) – $140.5M
  11. スチュアート・リトル (Stuart Little) – $140.0M
  12. グリーンマイル (The Green Mile) – $136.8M
  13. アメリカン・ビューティー (American Beauty) – $130.1M
  14. 007 ワールド・イズ・ノット・イナフ (The World Is Not Enough) – $126.9M
  15. ダブル・ジョパディー (Double Jeopardy) – $116.7M
  16. ノッティングヒルの恋人 (Notting Hill) – $116.1M
  17. ワイルド・ワイルド・ウエスト (Wild Wild West) – $113.8M
  18. アナライズ・ミー (Analyze This) – $106.8M
  19. アメリカン・パイ (American Pie) – $102.6M
  20. スリーピー・ホロウ (Sleepy Hollow) – $101.1M

2000年

  1. グリンチ (How the Grinch Stole Christmas) – $260.0M
  2. キャスト・アウェイ (Cast Away) – $233.6M
  3. M:I-2 (Mission: Impossible II) – $215.4M
  4. グラディエーター (Gladiator) – $187.7M
  5. ハート・オブ・ウーマン (What Women Want) – $182.8M
  6. パーフェクト ストーム (The Perfect Storm) – $182.6M
  7. ミート・ザ・ペアレンツ (Meet the Parents) – $166.2M
  8. X-メン (X-Men) – $157.3M
  9. 最終絶叫計画 (Scary Movie) – $157.0M
  10. ホワット・ライズ・ビニース (What Lies Beneath) – $155.4M
  11. ダイナソー (Dinosaur) – $137.7M
  12. グリーン・デスティニー (Crouching Tiger, Hidden Dragon) – $128.1M
  13. エリン・ブロコビッチ (Erin Brockovich) – $125.6M
  14. チャーリーズ・エンジェル (Charlie’s Angels) – $125.3M
  15. ナッティプロフェッサー2 (Nutty Professor II: The Klumps) – $123.3M
  16. ビッグママハウス (Big Momma’s House) – $117.6M
  17. リメンバー・ザ・タイタンズ (Remember the Titans) – $115.6M
  18. パトリオット (The Patriot) – $113.3M
  19. デンジャラス・ビューティー (Miss Congeniality) – $106.8M
  20. 60セカンズ (Gone in 60 Seconds) – $101.6M

2001年 9.11同時多発テロ発生

  1. ハリー・ポッターと賢者の石 (Harry Potter and the Sorcerer’s Stone) – $317.6M
  2. ロード・オブ・ザ・リング旅の仲間 (The Lord of the Rings: The Fellowship of the Ring) – $315.5M
  3. シュレック (Shrek) – $267.6M
  4. モンスターズ・インク (Monsters, Inc.) – $255.9M
  5. ラッシュアワー2 (Rush Hour 2) – $226.2M
  6. ハムナプトラ2/黄金のピラミッド (The Mummy Returns) – $202.0M
  7. パール・ハーバー (Pearl Harbor) – $198.5M
  8. オーシャンズ11 (Ocean’s Eleven) – $183.4M
  9. ジュラシック・パークIII (Jurassic Park III) – $181.2M
  10. PLANET OF THE APES/猿の惑星 (Planet of the Apes) – $180.0M
  11. ビューティフル・マインド (A Beautiful Mind) – $170.7M
  12. ハンニバル (Hannibal) – $165.1M
  13. アメリカン・パイ2 (American Pie 2) – $145.1M
  14. ワイルド・スピード (The Fast and the Furious) – $144.5M
  15. トゥームレイダー (Lara Croft: Tomb Raider) – $131.1M
  16. ドクタードリトル2 (Dr. Dolittle 2) – $112.9M
  17. スパイキッズ (Spy Kids) – $112.7M
  18. ブラックホーク・ダウン (Black Hawk Down) – $108.6M
  19. プリンセスダイアリー (The Princess Diaries) – $108.2M
  20. バニラ・スカイ (Vanilla Sky) – $100.6M

2002年

  1. スパイダーマン (Spider-Man) – $403.7M
  2. ロード・オブ・ザ・リング二つの塔 (The Lord of the Rings: The Two Towers) – $342.6M
  3. スター・ウォーズ エピソード2クローンの攻撃 – $310.7M
  4. ハリー・ポッターと秘密の部屋 (Harry Potter and the Chamber of Secrets) – $261.9M
  5. マイ・ビッグ・ファット・ウェディング (My Big Fat Greek Wedding) – $241.4M
  6. サイン (Signs) – $227.9M
  7. オースティン・パワーズ ゴールドメンバー (Austin Powers in Goldmember) – $213.3M
  8. メン・イン・ブラック2 (Men in Black II) – $190.4M
  9. アイス・エイジ (Ice Age) – $176.4M
  10. シカゴ (Chicago) – $170.7M
  11. キャッチ・ミー・イフ・ユー・キャン (Catch Me If You Can) – $164.6M
  12. 007 ダイ・アナザー・デイ (Die Another Day) – $160.9M
  13. スクービー・ドゥー (Scooby-Doo) – $153.3M
  14. リロ・アンド・スティッチ (Lilo & Stitch) – $145.8M
  15. トリプルX (xXx) – $142.1M
  16. サンタクロースリターンズクリスマス危機一髪 (The Santa Clause 2) – $139.2M
  17. マイノリティ・リポート (Minority Report) – $132.1M
  18. ザ・リング (The Ring) – $129.1M
  19. スウィートホームアラバマ (Sweet Home Alabama) – $127.2M
  20. Mr.ディーズ (Mr. Deeds) – $126.3M

2003年

  1. ロード・オブ・ザ・リング王の帰還 (The Lord of the Rings: The Return of the King) – $377.8M
  2. ファインディング・ニモ (Finding Nemo) – $339.7M
  3. パイレーツ・オブ・カリビアン/呪われた海賊たち (Pirates of the Caribbean: The Curse of the Black Pearl) – $305.4M
  4. マトリックス リローデッド (The Matrix Reloaded) – $281.6M
  5. ブルース・オールマイティ (Bruce Almighty) – $242.8M
  6. X-MEN2 (X2: X-Men United) – $214.9M
  7. エルフサンタの国からやってきた〜 (Elf) – $173.4M
  8. ターミネーター3 (Terminator 3: Rise of the Machines) – $150.4M
  9. マトリックス レボリューションズ (The Matrix Revolutions) – $139.3M
  10. チープ・バイ・ザ・ダズン (Cheaper by the Dozen) – $138.6M
  11. バッドボーイズ2バッド (Bad Boys II) – $138.6M (ほぼ同額)
  12. エンガー・マネージメント (Anger Management) – $135.6M
  13. 女神継承? (Bringing Down the House) – $132.7M
  14. ハルク (Hulk) – $132.2M
  15. ワイルド・スピードX2 (2 Fast 2 Furious) – $127.2M
  16. シービスケット (Seabiscuit) – $120.2M
  17. S.W.A.T. – $116.9M
  18. ラスト サムライ (The Last Samurai) – $111.1M
  19. フォーチュン・クッキー (Freaky Friday) – $110.2M
  20. 最終絶叫計画3 (Scary Movie 3) – $109.0M

2004年

  1. シュレック2 (Shrek 2) – $441.2M
  2. スパイダーマン2 (Spider-Man 2) – $373.6M
  3. パッション (The Passion of the Christ) – $370.8M
  4. ミート・ザ・ペアレンツ2 (Meet the Fockers) – $279.3M
  5. Mr.インクレディブル (The Incredibles) – $261.4M
  6. ハリー・ポッターとアズカバンの囚人 (Harry Potter and the Prisoner of Azkaban) – $249.5M
  7. ポーラー・エクスプレス (The Polar Express) – $187.9M
  8. デイ・アフター・トゥモロー (The Day After Tomorrow) – $186.7M
  9. ボーン・スプレマシー (The Bourne Supremacy) – $176.2M
  10. ナショナル・トレジャー (National Treasure) – $173.0M
  11. シャーク・テイル (Shark Tale) – $160.8M
  12. アイ,ロボット (I, Robot) – $144.8M
  13. トロイ (Troy) – $133.3M
  14. 50回目のファースト・キス (50 First Dates) – $120.9M
  15. ヴァン・ヘルシング (Van Helsing) – $120.2M
  16. 華氏911 (Fahrenheit 9/11) – $119.2M
  17. レモニー・スニケットの世にも不幸せな物語 (Lemony Snicket's A Series of Unfortunate Events) – $118.6M
  18. ドッジボール (DodgeBall: A True Underdog Story) – $114.3M
  19. ヴィレッジ (The Village) – $114.2M
  20. コラテラル (Collateral) – $101.0M

参考・補足

いずれも 北米アメリカカナダ)での累計興行収入 を概算で示しています

順位金額は、後年の再上映や細かな集計の修正によって若干入れ替わることがあります

上記あくまで「製作年」ではなく「北米公開年」を基準とし、その年に公開された作品の最終的な国内興行収入をもとにしたランキングです(年をまたいで興収を伸ばした作品も含みます)。

2025-01-03

[]2024年に読んだ本、前編

1月

読書(16冊)

フィリップウィルキンソンまぼろしの奇想建築 天才が夢みた不可能な挑戦 (NATIONAL GEOGRAPHIC)」

十三機兵防衛公式脚本集:Double Strand」

伊藤之雄元老 近代日本の真の指導者たち」★★

高木ケイガルシア・デ・マロネスによって救済された大地」

アマサワトキオラゴス生体都市

麦原遼「逆数宇宙

十三機兵防衛公式保存記録:Double Helix」

趙景達(チョ・キンダル)「植民地朝鮮日本」★★★

琴柱遥「枝角の冠」★

新藤尚典「推し三原則

榛見あきる「虹霓のかたがわ」

田場狩「秘伝隠岐七番歌合」

河野咲子「水溶性ダンス

齋藤雅典「菌根の世界:菌と植物のきってもきれない関係

高野秀行「謎の独立国家ソマリランド そして海賊国家プントランド戦国南部ソマリア

ブライアン・インズ、クリス・マクナブブライアン・インズ、クリス・マクナブ「ビジュアル 世界の偽物大全 フェイク・詐欺捏造の全記録」

薄い本が多いので冊数はややチート

やはり高野秀行面白いし、SFは定期的に読みたくなる。

美術

キース・ヘリングアートストリートへ」

「開館20周年記念展/帝国ホテル二代目本館100周年 フランク・ロイド・ライト 世界を結ぶ建築

併設「ルオー 家族のいる風景

スカイツリープラネタリウム

2月

読書11冊+α)

藤村シシン「古代ギリシャリアル」★★★

岸見一郎古賀史健嫌われる勇気 自己啓発の源流「アドラー」の教え」

齋藤雅典「もっと菌根の世界

芝崎みゆき古代マヤアステカ不可思議大全」

キャスリン・ペトラス、ロス・ペトラス 「人体ヒストリア その「体」が歴史を変えた」

高野秀行アヘン王国潜入記」★★

高野秀行西南シルクロードは密林に消える」

春画ール「春画の穴―あなたの知らない「奥の奥」―」★

岸見一郎古賀史健幸せになる勇気 自己啓発の源流「アドラー」の教えII」

齋藤勝裕「「原子力」のことが一冊でまるごとわかる」

下村智恵理「AN-BALANCE:日本非科学紀行 第S5話 鳥は見えるか?」

下村智恵理「天網恢々アルケミー Project #34 黄泉から手紙

下村智恵理「天網恢々アルケミー Project #35 旧針金山トンネル悪霊

ヘシオドス神統記」

美術

マリー・ローランサン時代うつす眼」

石橋財団コレクション選 特集コーナー展示 野見山暁治

(どちらもアーティゾン美術館)

3月

読書(13冊)

芝崎みゆきイースター島不可思議大全:モアイと孤島のミステリー

五十嵐ジャンヌ「なんで洞窟壁画を描いたの?―美術のはじまりを探る旅 (13歳から考古学) 」

ヘーシオドス仕事と日」

芝崎みゆき古代インカ・アンデス不可思議大全」★

布施英利「洞窟絵画を旅して ヒトの絵画の四万年

辻田真佐憲「「戦前」の正体 愛国神話日本近現代史」★★★

田辺聖子田辺聖子小倉百人一首」(再読)

イソップアイソーポス)「イソップ寓話集」

タイモン・スクリーチ大江戸異人往来」

ギリシア喜劇全集 1」

野坂昭如アメリカひじき火垂るの墓」★★

北杜夫幽霊 ――ある幼年と青春物語――」

アポロドーロス「ギリシア神話

美術

マティス 自由フォルム

遠距離現在 Universal / Remote」

4月

読書(13冊+α)

石黒達昌日本SF臨界石黒達昌 冬至草/雪女」

半藤一利保阪正康昭和の名将と愚将」(再読)

まっぷる 山形 鶴岡酒田蔵王米沢24

北杜夫「楡家の人びと 第一部」

北杜夫「楡家の人びと 第二部」

北杜夫「楡家の人びと 第三部」

ギリシア喜劇全集 2」

「蒸気駆動の男: 朝鮮王朝スチームパンク年代記

安達宏昭「大東亜共栄圏-帝国日本アジア支配構想」★

ギリシア喜劇全集 3」

ラリイ・ニーヴン無常の月」(旧版)★★

進士素丸「文豪どうかしてる逸話集」

北杜夫「木霊 或る青年期と追想物語」★

中井紀夫日本SF臨界中井紀夫 山の上の交響楽」

何となく東アジア歴史特に第二次世界大戦ばかり読んでいる。小説も含めて。

美術

テレビ朝日開局65周年記念『MUCA(ムカ)展 ICONS of Urban Artバンクシーからカウズまで~』

5月

読書(16冊)

加藤聖史「「大日本帝国崩壊 東アジア1945年」★★

「別冊日経サイエンスログラフィック宇宙 時空と重力起源に迫る」

酉島伝法「隔世遺傳(かくりよいでん)『皆勤の徒』設定資料集」

間宮改衣「ここはすべての夜明けまえ」★★★

田中空「未来観測員」

ギリシア喜劇全集 4」

ラリイ・ニーヴン魔法の国が消えていく」

安野貴博「サーキットスイッチャー」

竹田人造「AI法廷ハッカー弁護士

ラリー・ニーヴン他「魔法の国よ永遠なれ」

岸本惟「迷子の龍は夜明けを待ちわびる」

ギリシア喜劇全集 5」

梶尾真治地球プレイン・ヨーグルト」(旧版)★

鈴木理生江戸の町は骨だらけ」

沓掛良彦・訳「ホメーロスの諸神讚歌」

スティーヴン・バクスター「〈ジーリークロニクル①〉プランクゼロ

漫画

入江亜季「北北西に曇と往け」七巻

1000decillion「Morals under a pagoda I/II」(同人誌

1000decillion「Morals under a pagoda III/IV」(同人誌

美術

ブランクーシ 本質象る

石橋財団コレクション特集コーナー展示 清水多嘉示」

北欧神秘ノルウェースウェーデンフィンランド絵画

6月

読書(13冊)

スティーヴン・バクスター「〈ジーリークロニクル②〉真空ダイヤグラム

真貝寿明「宇宙検閲官仮説 「裸の特異点」は隠されるか」★

大村幸弘、篠原千絵ヒッタイト魅せられて: 考古学者に漫画家が質問!!」★★

津本英利「ヒッタイト帝国 「鉄の王国」の実像

スティーブン・キングスタンド・バイ・ミー 恐怖の四季 秋冬編」

スティーブン・キングゴールデン・ボーイ 恐怖の四季 春夏編」

安村敏信もっと知りたい 狩野派 探幽と江戸狩野派

アリク・カーシェンバウム「まじめにエイリアンの姿を想像してみた」

藤村シシン「秘密古代ギリシャ、あるいは古代魔術史」★★★

山本健人「すばらしい医学――あなたの体の謎に迫る知的冒険

中野京子「怖い絵」

藤田正勝「日本哲学入門」

中野京子展覧会の「怖い絵」」

漫画

売野機子薔薇だって書けるよ: 売野機子作品集

高江洲弥「リボンと棘 高江洲弥作品集

1000decillion「Morals under a pagoda -Kama Sutra-」(同人誌

1000decillion「Morals under a pagoda -Egypt-」(同人誌

1000decillion「morals under a pagoda -Greece-」(同人誌

美術

「オープニング展 UESHIMA MUSEUM 一般公開

メサギャラリー(LG横浜イノベーションセンター

毎年月ごとの上位三冊を選んでいるが、ある月の四位が別の月の二位を上回って面白いことがある。つまり当たりの多かった月だ。すべての本に対して星の数で評価すべきかもしれない。

2024-11-17

日本マスコミが伝えない

➤「救いようが最もうない、極東自称他称の〝ジャーナリスト〟や〝学者〟、〝知米派〟は読まなくても構い。読んでもその肥大化した自己承認欲求、度し難い自己愛人格では読むことはできないし、理解もできない。ただ見下した目線で見やるだけで、そこに自分が利用できる素材がなければ鼻で嗤うだけだ。この文章は、我がU.S.を領りたい、領ろうと下向きの反省眼光で欲する諸君に読んで貰いたい。

I Traveled to 46 States in America This Summer. Here’s Why Trump Won.

By Frank S. Zhou

By Ezekiel A. Wells

Ezekiel A. Wells ’27 is a Double Concentrator in Environment Science & Engineering and Economics in Eliot House. He spent last summer traveling to 46 American states conducting interviews for his YouTube series, “Crossroads America.

3 days ago

A week after Democrats’ election loss, accusations have flown in every direction within their Party. Some fault President Joe Biden for an egoistic refusal to drop out of the race earlier. Some blame the Harris campaign for failing to serve key demographics and communicate a clear vision for the country. And some blame Americans, claiming that racism and sexism drove voters toward Trump.

These factors certainly exist, but we’re missing a larger piece of the picture.

Over the summer, I traveled to 46 states in the U.S., creating a YouTube series highlighting slices of life across the country. In conversations from my nearly three-month road trip, I spoke with Republicans who were certain that inflation is entirely Biden’s fault and Democrats who, despite their frustrations with corporate profits and desires for universal healthcare, hoped for a more moderate candidate. From supporters of all candidates, I heard a shocking amount of misinformation.

After combing through hundreds of hours of interview footage from swing state Trump voters, I am certain that, as much as other factors influenced the outcome of the election, our crumbling media landscape — which has caused a rift in our democracy — is most to blame.

In the postwar period, news was dominated by three main channels, and because of the Fairness Doctrine, each station reported the same stories and covered multiple sides of each issue. Viewers picked which channels they watched mainly based on their preferences for news anchors’ personalities. Of course, this model had its problems, but, at the end of the day, it meant that Americans worked with a shared set of facts.

A shared set of facts is not the world we live in today.

Throughout my interviews, conspiracy theories were rampant, and on at least five separate occasions across separate states, I was told that Bill Gates tampers with our food, adding plastic to our fruits and vegetables to make his medical investments more profitable.

In conversations with voters, neither side seemed able to name many specific policy issues they cared about; everyone just seemed to repeat the words of their favorite pundits, podcast hosts, and internet personalities.

Although this behavior is harmful, I don’t blame everyday Americans. Blame falls on the media that has ostracized, disillusioned, and misinformed them.

Advertisement

I first saw this trend with low-wage workers in West Virginia, who — despite falling inflation rates — have seen stagnated salaries and clear increases in food costs. Channels like Fox News bred anger and resentment for many of them.

Take July of this summer, for example, when for the first time in his presidency, prices actually fell under the Biden administration. Traditional media establishments rushed to celebrate this victory, with one article from CNN declaring, “The White House can finally cross out ‘inflationon its list of presidential liabilities.” However, outside these bubbles, I observed many Americans held a different view.

In late July, I was welcomed at a massive family reunion in Tylertown, Mississippi, where one Trump voter — a middle-aged, Black, family man, pastor, and soul food enthusiast — made this clear.

“When I go in the grocery stores, and I gotta spend my last to get groceries, you mean to tell me I’m not gonna look and see who’s gonna vote to help me? I voted for Trump and I’d vote for him again, because he put money in our pocket,” he told me.

In their coverage, mainstream news organizations obsess over the Federal Reserve’s next rate cuts while failing to connect with people concerned with their next meals. With titles like “Vance: Young Americans ‘Are Becoming Paupers’ Due To Inflation, High Housing Costs,” sites like The Daily Wire had their fingers on the pulse of American sentiment, welcoming new readership from those who felt neglected by traditional media.

This problem was not just confined to the economy. While Biden’s mental state was deteriorating, liberal media outlets seemed to under-cover these stories, sheltering him from scrutiny of his declining capabilities, until the infamous presidential debate.

Formerly trusted networks slowly made themselves indigestible to the polarized American public, and in 2024, for the third year in a row, a Gallup poll found that more Americans indicated having “no trust” in the media than those who trust it a “great deal/fair amount”.

So where does the average American turn when the nation’s media cannot be trusted? For many people, it was YouTube talk shows, Newsmax, and podcasters such as Joe Rogan.

While Democrats seek to blame various internal factors for this election’s loss, I cannot help but think of Joe Rogan’s Trump endorsement, the many blind lies I heard from ordinary citizens across the country, and declining trust in American journalism.

As Harvard students and members of higher education institutions, we have a part to play in the problem. At Harvard’s Institute of Politics, those who denied the 2020 election results have been precluded from speaking at the JFK Jr. Forum. While the goal is understandable, it shields students from understanding the American viewpoints they represent.

Advertisement

There is a difference between platforming intentional and manipulative misinformation and listening to and learning about where people are and what they believe.

As a pipeline to mainstream media, Harvard, and its future journalists, have to consider the audience they lose when they stay inside of their bubble and ignore the issues of everyday Americans.

The disappearance of factual importance in our world is alarming and dangerous, but if we, as aspiring journalists, politicians, and engaged citizens, want to be taken seriously in communicating Trump’s threat to democracy, inflationary tariff policies, and so on, we owe American voters that seriousness, too.

Ezekiel A. Wells ’27 is a Double Concentrator in Environment Science & Engineering and Economics in Eliot House. He spent last summer traveling to 46 American states conducting interviews for his YouTube series, “Crossroads America."

2024-07-08

anond:20240708185755

やるも何もググればいくらで出てくるぞ。下記のように

double minority asexuality asd adhd

Are Autism Spectrum Disorder and Asexuality Connected?

https://www.researchgate.net/publication/356247505_Are_Autism_Spectrum_Disorder_and_Asexuality_Connected

Asexuality is a lack of sexual attraction to any gender. There is some evidence to suggest that many self-identified asexuals have a formal diagnosis of autism spectrum disorder which is characterized by deficits in social interaction and communication, as well as by restricted and repetitive interests and behaviors. Additionally, the literature shows that asexuality and lack of sexual attraction or low sexual interest is overrepresented in people with autism spectrum disorder compared with neurotypical samples. Nevertheless, no studies have been conducted to investigate the relationship between autism and asexuality in depth. We conducted a systematic review of the literature to examine whether asexuality and autism spectrum disorder are connected. We conclude that asexuality and autism share various aspects, such as a possible role of prenatal factors, reference to romantic dimensions of sexual attraction and sexual orientation, and non-partner-oriented sexual desire, but future research should explore and clarify this link.

 

性愛とは、どの性別にも性的魅力を感じないことを指します。多くの自己認識された無性愛者が、自閉症スペクトラム障害ASD)の正式な診断を受けているという証拠がありますASDは、社会的相互作用コミュニケーションの欠陥、ならびに制限された反復的な興味や行動によって特徴付けられますさらに、文献によると、無性愛性的魅力の欠如、または低い性的関心は、神経典型的なサンプルと比較して、自閉症スペクトラム障害を持つ人々に過剰に表れています。それにもかかわらず、自閉症と無性愛関係を深く調査する研究は行われていません。私たちは、無性愛自閉症スペクトラム障害が関連しているかどうかを調べるために、文献の体系的なレビューを行いました。私たちは、無性愛自閉症が、出生前の要因の役割性的魅力と性的指向ロマンチックな側面への言及パートナー指向でない性的欲望など、さまざまな側面を共有していると結論付けましたが、将来の研究はこのリンクを探求し、明確にする必要があります

 

あるものなんか下記から始まって笑っちゃったw そっかw一般的概念だったんだw

This chapter challenges the commonly held notion that individuals with ASD are asexual or inappropriate in their sexual behaviors.

この章では、自閉症スペクトラム障害ASD)を持つ個人が無性愛であるか、性的行動が不適切であるという一般的概念に挑戦しています

アセクシャルセックス依存症発達障害である可能性は高いだろうけど、別にイコールではないだろうよってねw

発達障害じゃないアセクシャルもいるでしょうよw

ちなみにこれは発達障害アセクシャル不適切社会的けがあれば、異性愛者として楽しめるとかいう内容みたいよ

 

あと、ずっと『なんでセックスするんだ😡』って言ってるが、アセクシャルセックスするやつはするぞ。なんなら性依存症だっているし

セックスで情が深められないだけ、恋愛以前に人や気持ちに対する関する関心が無いか薄い、それにグラデーションがあるだけ

 

それからアイデンティティ自分で定めるものから今日から私はアセクシャルって決めたらアセクシャルだぞ

2024-06-12

まとめてみた

https://x.com/Xbox/status/1799869701704892823

一昨日だかに配信されてたマイクロソフトゲームソフト発表配信、新作がたくさんあるように見えて半分以上がPS5でも遊べるの、ちょっと節操ないんじゃない?

タイトルXbox Series S/XSteamPS4PS5その他
CALL OF DUTY BLACK OPS6XboxOne版なし
INDIANA JONES and the GREAT CIRCLE---
GEARS OF WAR E-DAY---
DOOM THE DARK AGES--
AVOWES---
DIABLO VESSEL OF HATRED-
MICROSOFT Flight Simulator 2024---
WORLD OF WARCRAFT THE WAR WITHIN----Battle.net
DRAGON AGE THE VEILGUARD--
ASSAIN'S CREED SHADOWS--
S.T.A.L.K.E.R 2 Heart of Chornobyl--
AGE of MYTHOLOGY---
FABLE---
MIXTAPE--
PERFECT DARK---
EXPEDITION 33--
SOUTH OF MIDNIGHT---
STARFIELD SHATTERED SPACE---
STATE OF DECAY 3---
WUCHANG:FALLEN FEATHERS---
The Elder Scrolls ONLINE GOLD ROAD-
METAL GEAR SOLID DELTA SNAKE EATER--
Fallout76 SKYLINE VALLEY-
LIFE IS STRANGE DOUBLE EXPOSURE--
Sea of Thieves--
ATOMFALL--
FLINTROCK THE SIEGE OF DAWN-
Winter Burrow---
FRAGPUNK--
MECHABREAK--

縦二連の重

Shige the vertical double barrel

2024-03-01

[]現代音楽を聴こう 2024.3.1

https://www.youtube.com/watch?v=roOKPeV2UCc


Piano Concerto by Simon Steen-Andersen


Performed by Nicolas Hodges, Andre de Ridder and Helsinki Symphony Orchestra, February 2021 for live streaming.


By Simon Steen-Andersen 2014


Commissioned by Donaueschinger Musiktage


Program note:


In Piano Concerto the perfect, classical grand piano is confronted with a battered, almost completely broken, grand piano in a sort of virtual double concerto. The soloist, Nicolas Hodges, sits across from a video doppelgänger playing the damaged instrument that has been dropped onto a concrete floor from a height of 8 meters.


Confronted with the damaged, out of tune piano we may experience the newly tuned, classical grand piano and symphony orchestra in a slightly different light. The composer insists however that this is not just a broken instrument – it is a new, “prepared” instrument with an expanded palette of sounds and its own poetry and beauty.

2023-11-20

anond:20231118160705

野球用語和製英語ばっかりだよね。アウトとかストライクとかの1単語からなる用語英語でもそのまま通じるものが多いけど(1語でもバスター→fake buntなど通じないものはある)、2語以上からなる用語だと、フォアボールbase on ballsまたはwalk、デッドボール→hit by pitchとか、英語として通用する用語のほうが少ないぐらい。そのまま通じるのはホームランとかダブルプレーかぐらいか?

おもしろいのがground rule double、すなわちエンタイトルツーベースという用語グラウンドルールって本来フェンスのすきまにボールがはさまって出てこなくなったとかドーム天井屋根ボールが当たったとかの球場ごとの独自ルールのこと。しかし、ワンバウンド柵越えはちゃんと明文化された共通ルールがあって、グラウンドルールではない。安全進塁権が与えられた(entitled)という和製英語の方が正しい。英語でもentitled doubleと呼ぶべきだと思う(英語ではツーベーススリーベースとは言わない)。

2023-09-20

ゴーンjoke

生きていることが即ち苦しみなのです。

から

Gone with the wind.

Gone as a double bass.

ゴーンは楽器になってゴーン。

2023-04-22

ブラのカップ表記C++かにするべき18の理由


1. C++プログラミング言語として有名であり、ブラのカップ数をC++表記することで、テクノロジー精通していることをアピールできる。

2. C++はCよりも高度な機能を持っており、ブラのカップ数をC++表記することで、自分バストの質や機能性を高めることができる。

3. C++オブジェクト指向プログラミングサポートしており、ブラのカップ数をC++表記することで、自分バストオブジェクトとして扱うことができる。オブジェクト指向プログラミングでは、オブジェクト属性メソッドを持たせることができるので、自分バストにも色や形や大きさなどの属性や、揺れるや揉むや吸うなどのメソッドを持たせることができる。

4. C++は多重継承サポートしており、ブラのカップ数をC++表記することで、自分バスト複数クラスから継承することができる。多重継承では、複数クラスの特徴や機能を組み合わせることができるので、自分バストにも様々な特徴や機能を組み合わせることができる。例えば、自分バスト芸能人アニメキャラクターなどのクラスから継承することで、その人物キャラクターバストに似せることができる。

5. C++テンプレートサポートしており、ブラのカップ数をC++表記することで、自分バストテンプレート化することができる。テンプレートでは、型や値などのパラメータ指定することで、汎用的なコードを生成することができるので、自分バストにも型や値などのパラメータ指定することで、汎用的なバストを生成することができる。例えば、自分バストをint型やdouble型などの型に指定することで、整数小数などの値に変換することができる。

6. C++例外処理サポートしており、ブラのカップ数をC++表記することで、自分バストに発生する可能性のある例外対処することができる。例外処理では、エラーや異常などの例外が発生した場合に、適切な処理を行うことができるので、自分バストにもエラーや異常などの例外が発生した場合に、適切な処理を行うことができる。例えば、自分バストが垂れたり痛んだりした場合に、修正したり治療したりする処理を行うことができる。

2023-04-13

[]

WiFi NVRAM WARNING: ERR 0x10

どうもWi-Fiのところにでるこれが悪さしてるみたい。エングラムモードにしてもNVRAMかきこむところが出ないってことはエラー起こしててNVRAMが作動してないってこと・・・Wi-Fiの設定がNVRAMに書き込んである物理アドレスを読みに行けない

?そうみた。それでなんかランダム化をストップしてもコロコロかわるんだな。くそったれが・・

NVRAM設定が出てこない

WiFi NVRAM WARNING: ERR 0x10さえ除去できれば、でてくるようになるのか?Wi-Fi fix files.rar経由でおこなうのは、だるいから

https://jagadgetaholic.blogspot.com/2017/10/mtk-nvram-err-0x10-fix.html

2023-04-11

anond:20230411185446

こんにちは、これはBingです。😊 外国語単語+る、で動詞として定着している単語を表にしてください、というご依頼ですね。 私はウェブ検索を行って、いくつかの例を見つけました。1 以下がその一部です。

単語 元の単語 備考

サボる サボタージュ(sabotage) 前方一致

ダブる ダブルdouble発音一致

ハモる ハーモニーharmony) 前方一致

ググる グーグルgoogleググレカス

パニクる パニック(panic) 後方追加

ディスる ディスリスペクト(disrespect) 前方一致

ミスる ミス(miss) 後方追加

トラブる トラブル(trouble) 後方追加

デコる デコレート(decorate) 後方追加

メモメモ(memo) 後方追加

バズる バズ(buzz) 後方追加

スペる スペランカー(spelunker) 前方一致

他にもありますが、ここでは省略します。 このように、外国語単語+る、で動詞として定着している単語は、前方一致、後方追加、発音一致などのパターンがあります。 ご参考になれば幸いです。

anond:20230410213920

Q: 外国語単語+る、で動詞として定着している単語を表にしてください

以下は例です

サボる サボタージュ(sabotage)

ダブる ダブルdouble

ハモる ハーモニーharmony

ググる グーグルgoogle

パニクる パニック(panic)

ディスる ディスリスペクト(disrespect)

ミスる ミス(miss)

トラブる トラブル(trouble)

デコる デコレート(decorate)

メモメモ(memo)

バズる バズ(buzz

スペる スペランカー(spelunker)

A: 外国語単語+る 動詞としての定着した単語

アクセアクセサリー(accessory

キャッチキャッチャー(catcher)

サーチる サーチ(search)

ターゲットターゲット(target)

プロモプロモーション(promotion)

セレクトセレクトselect

フィックスる フィックス(fix

バイオバイオリズム(biorhythm)

ラブる ラブ(love

レポる レポート(report)

コピる コピー(copy)

インプットインプット(input)

アウトプットアウトプット(output)

ディスカッションディスカッション(discussion)

anond:20230410213920

タクる taxi タクシーを呼ぶ・タクシーに乗る

ダブる double高校大学で)留年する・(トレカなどが)重複する

デコる decorate 装飾する

番外

ロムる ROM(Read Only Member、和製英語) 古くはパソコン通信ウェブ掲示板LINEグループなどで書き込まないで読むだけに徹する

ログイン ユーザー登録
ようこそ ゲスト さん