Types of Obesity and Its Association with the Clustering of Cardiovascular Disease Risk Factors in Jilin Province of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Ethical Standards
2.3. Data Collection
2.4. Measurements
2.5. Definitions
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Haslam, D.W.; James, W.P. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Fontana, L.; Eagon, J.C.; Trujillo, M.E.; Scherer, P.E.; Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007, 56, 1010–1013. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.A.; Hergenroeder, A.C. Waist circumference predicts increased cardiometabolic risk in normal weight adolescent males. Int. J. Pediatr. Obes. 2011, 6, e307–e311. [Google Scholar] [CrossRef] [PubMed]
- Mendis, S.; Puska, P.; Norrving, B. Global Atlas on Cardiovascular Disease Prevention and Control; World Health Organization in Collaboration with the World Heart Federation and the World Stroke Organization; World Health Organization: Geneva, Switzerland, 2011; pp. 3–18. [Google Scholar]
- Moran, A.E.; Forouzanfar, M.H.; Roth, G.A.; Mensah, G.A.; Ezzati, M.; Murray, C.J.; Naghavi, M. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: The Global Burden of Disease 2010 study. Circulation 2014, 129, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Liu, J.; Ge, J.P.; Chen, L.; Zhao, Z.G.; Yang, W.Y. Prevalence of cardiovascular disease risk factor in the Chinese population: The 2007–2008 China National Diabetes and Metabolic Disorders Study. Eur. Heart J. 2012, 33, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Jiayong, Z.; Li, B.; Zhu, H.; Chang, H.; Shi, W.; Gao, Z.; Ning, X.; Wang, J. Prevalence and Clustering of Cardiovascular Disease Risk Factors among Tibetan Adults in China: A Population-Based Study. PLoS ONE 2015, 10, e0129966. [Google Scholar] [CrossRef] [PubMed]
- De Simone, G.; Olsen, M.H.; Wachtell, K.; Hille, D.A.; Dahlof, B.; Ibsen, H.; Kjeldsen, S.E.; Lyle, P.A.; Devereux, R.B. Clusters of metabolic risk factors predict cardiovascular events in hypertension with target-organ damage: The LIFE study. J. Hum. Hypertens. 2007, 21, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Andegiorgish, A.K.; Wang, J.; Zhang, X.; Liu, X.; Zhu, H. Prevalence of overweight, obesity, and associated risk factors among school children and adolescents in Tianjin, China. Eur. J. Pediatr. 2012, 171, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, Y.; Zhang, X.; Li, Y.; Kou, C.; Li, B.; Tao, Y.; Zhen, Q.; He, H.; Kanu, J.S.; et al. Awareness, treatment, control of diabetes mellitus and the risk factors: survey results from northeast China. PLoS ONE 2014, 9, e103594. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kou, C.; Liu, Y.; Li, B.; Tao, Y.; D’Arcy, C.; Shi, J.; Wu, Y.; Liu, J.; Zhu, Y.; et al. Rural-Urban differences in the prevalence of chronic disease in northeast China. Asia-Pac. J. Public Health/Asia-Pac. Acad. Consort. Public Health 2015, 27, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.X.; Li, X.; Zhu, H.P.; Huo, D.; Zhou, T.; Pan, L.; Luo, Y.X.; Wang, W.; Wang, Z.P.; Chen, D.N.; et al. Association of hematological parameters with metabolic syndrome in Beijing adult population: A longitudinal study. Endocrine 2014, 46, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Joint committee for developing Chinese guidelines on prevention and treatment of dyslipidemia in adults. Chinese guidelines on prevention and treatment of dyslipidemia in adults. Chin. J. Cardiol. 2007, 35, 390–419. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2008, 31, S55–S60. [Google Scholar]
- Liu, L. Guidelines for prevention and treatment of hypertension in China 2010. Chin. J. Hypertens. 2011, 08, 701–743. [Google Scholar]
- The People’s Republic of China National Health and Family Planning Commission. Criteria of body weight for Chinese adult, Health industry criterions of the People’s Republic of China: Beijing, China, 2013.
- Sakurai, M.; Kobayashi, J.; Takeda, Y.; Nagasawa, S.Y.; Yamakawa, J.; Moriya, J.; Mabuchi, H.; Nakagawa, H. Sex Differences in Associations Among Obesity, Metabolic Abnormalities, and Chronic Kidney Disease in Japanese Men and Women. J. Epidemiol./Jpn. Epidemiol. Assoc. 2016. [Google Scholar] [CrossRef] [PubMed]
- Alam, D.S.; Talukder, S.H.; Chowdhury, M.A.; Siddiquee, A.T.; Ahmed, S.; Pervin, S.; Khan, S.; Hasan, K.; Koehlmoos, T.L.; Niessen, L.W. Overweight and abdominal obesity as determinants of undiagnosed diabetes and pre-diabetes in Bangladesh. BMC Obes. 2016, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 2004, 89, 2595–2600. [Google Scholar] [CrossRef] [PubMed]
- Westphal, S.A. Obesity, abdominal obesity, and insulin resistance. Clin. Cornerstone 2008, 9, 23–29; discussion 30–31. [Google Scholar] [CrossRef]
- Despres, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.J.; Zimmet, P.Z. Expanding evidence for the multiple dangers of epidemic abdominal obesity. Circulation 2008, 117, 1624–1626. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.C., Jr.; Haslam, D. Abdominal obesity, waist circumference and cardio-metabolic risk: Awareness among primary care physicians, the general population and patients at risk--the Shape of the Nations survey. Curr. Med. Res. Opin. 2007, 23, 29–47. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Biswas, K.; Roy, S.; Banerjee, R.K.; Bandyopadhyay, U. Smoking and the pathogenesis of gastroduodenal ulcer—Recent mechanistic update. Mol. Cell. Biochem. 2003, 253, 329–338. [Google Scholar] [CrossRef]
- Jayalekshmi, P.A.; Hassani, S.; Nandakumar, A.; Koriyama, C.; Sebastian, P.; Akiba, S. Gastric cancer risk in relation to tobacco use and alcohol drinking in Kerala, India—Karunagappally cohort study. World J. Gastroenterol. 2015, 21, 12676–12685. [Google Scholar] [CrossRef] [PubMed]
- Booker, C.S.; Mann, J.I. Trans fatty acids and cardiovascular health: Translation of the evidence base. Nutrition, metabolism, and cardiovascular diseases. Nutr. Metab. Cardiovasc. 2008, 18, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Remig, V.; Franklin, B.; Margolis, S.; Kostas, G.; Nece, T.; Street, J.C. Trans fats in America: A review of their use, consumption, health implications, and regulation. J. Am. Diet. Assoc. 2010, 110, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Non-Obesity n = 8863 (%) | General Obesity n = 52 (%) | Central Obesity n = 6542 (%) | Compound Obesity n = 2680 (%) | χ2 | p |
---|---|---|---|---|---|---|
Sex | 16.907 | 0.001 | ||||
Men | 4174 (47.1) | 19 (36.5) | 2913 (44.5) | 1295 (48.3) | ||
Women | 4689 (52.9) | 33 (63.5) | 3629 (55.5) | 1385 (51.7) | ||
Age | 847.342 | <0.001 | ||||
18~ | 4492 (50.7) | 24 (46.2) | 1851 (28.3) | 989 (36.9) | ||
45~ | 3048 (34.4) | 23 (44.2) | 2968 (45.4) | 1135 (42.3) | ||
60~ | 1323 (14.9) | 5 (9.6) | 1723 (26.3) | 556 (20.8) | ||
Area | 1.834 | 0.608 | ||||
Urban | 4625 (52.2) | 27 (51.9) | 3421 (52.3) | 1362 (50.8) | ||
Rural | 4238 (47.8) | 25 (48.1) | 3121 (47.7) | 1318 (49.2) | ||
Occupation | 339.090 | <0.001 | ||||
Manual | 5383 (60.7) | 24 (46.2) | 3358 (51.3) | 1415 (52.8) | ||
Intellectual | 1865 (21.0) | 16 (30.7) | 1223 (18.7) | 475 (17.7) | ||
Others | 1615 (18.3) | 12 (23.1) | 1961 (30.0) | 790 (29.5) | ||
Family per capita monthly income (RMB) | 21.16 | 0.002 | ||||
<1000 | 3645 (41.2) | 20 (38.5) | 2828 (43.2) | 1164 (43.4) | ||
1000–3000 | 4382 (49.4) | 24 (46.2) | 3131 (47.9) | 1225 (45.7) | ||
>3000 | 836 (9.4) | 8 (15.3) | 583 (8.9) | 291 (10.9) | ||
Smoking | 52.620 | <0.001 | ||||
Yes | 2893 (32.6) | 12 (23.1) | 1893 (28.9) | 699 (26.1) | ||
No | 5970 (67.4) | 40 (76.9) | 4649 (71.1) | 1981 (73.9) | ||
Drinking | 4.793 | 0.188 | ||||
Yes | 1371 (15.5) | 4 (7.7) | 1013 (15.5) | 383 (14.3) | ||
No | 7492 (84.5) | 48 (92.3) | 5529 (84.5) | 2297 (85.7) |
Risk Factor | Non-Obesity | General Obesity | Central Obesity | Compound Obesity | F/χ2 | p |
---|---|---|---|---|---|---|
Blood pressure (mmHg) | ||||||
SBP | 124.86 ± 19.26 | 130.77 ± 22.27 | 135.96 ± 21.34 | 140.31 ± 20.91 | 589.15 | <0.001 |
DBP | 76.65 ± 10.77 | 80.10 ± 11.87 | 81.93 ± 11.54 | 85.61 ± 11.81 | 551.11 | <0.001 |
Plasma glucose (mmol/L) | ||||||
FPG (n = 16330) | 4.9 (4.4, 5.4) | 5.1 (4.6, 5.6) | 5.2 (4.7, 5.9) | 5.4 (4.8, 6.1) | 782.85 | <0.001 |
OGTT-2 h PG (n = 1807) | 5.5 (4.8, 6.3) | 5.8 (5.0, 6.8) | 5.9 (5.1, 7.2) | 6.1 (5.1, 7.4) | 75.07 | <0.001 |
Serum lipids (mmol/L) | ||||||
TC | 4.56 (3.98, 5.22) | 4.63 (3.90, 5.04) | 5.00 (4.36, 5.71) | 5.07 (4.45, 5.77) | 863.73 | <0.001 |
TG | 1.14 (0.82, 1.66) | 1.47 (0.99, 2.48) | 1.83 (1.24, 2.75) | 2.09 (1.46, 3.14) | 2764.65 | <0.001 |
HDL-C | 1.45 (1.23, 1.73) | 1.23 (1.04, 1.49) | 1.26 (1.06, 1.49) | 1.18 (1.00, 1.39) | 1623.37 | <0.001 |
LDL-C | 2.66 (2.19, 3.23) | 2.59 (2.19, 3.15) | 3.05 (2.50, 3.66) | 3.08 (2.52, 3.68) | 808.79 | <0.001 |
Risk Factor | Non-Obesity n (%) | General Obesity n (%) | Central Obesity n (%) | Compound Obesity n (%) | χ2 | p | pa |
---|---|---|---|---|---|---|---|
Hypertension | 1588.21 | <0.001 | <0.001 | ||||
Yes | 2015 (22.7) | 23 (44.2) | 3088 (47.2) | 1561 (58.2) | |||
No | 6848 (77.3) | 29 (55.8) | 3454 (52.8) | 1119 (41.8) | |||
Hyperlipidemia | 1669.56 | <0.001 | <0.001 | ||||
Yes | 3710 (41.9) | 26 (50.0) | 4552 (69.6) | 2051 (76.5) | |||
No | 5153 (58.1) | 26 (50.0) | 1990 (30.4) | 629 (23.5) | |||
Diabetes | 519.63 | <0.001 | <0.001 | ||||
Yes | 433 (4.9) | 7 (13.5) | 947 (14.5) | 437 (16.3) | |||
No | 8430 (95.1) | 45 (86.5) | 5595 (85.5) | 2243 (83.7) | |||
Smoking | 52.620 | <0.001 | <0.001 | ||||
Yes | 2893 (32.6) | 12 (23.1) | 1893 (28.9) | 699 (26.1) | |||
No | 5970 (67.4) | 40 (76.9) | 4649 (71.1) | 1981 (73.9) |
Number ofCVD Risk Factors | Non-Obesity n (%) | General Obesity n (%) | Central Obesity n (%) | Compound Obesity n (%) |
---|---|---|---|---|
0 | 3047 (34.4) | 12 (23.1) | 909 (13.9) | 227 (8.5) |
1 | 3271 (36.9) | 19 (36.5) | 2085 (31.9) | 760 (28.4) |
2 | 1906 (21.5) | 16 (30.8) | 2400 (36.7) | 1142 (42.5) |
3 | 588 (6.6) | 3 (5.8) | 997 (15.2) | 500 (18.7) |
4 | 51 (0.6) | 2 (3.8) | 151 (2.3) | 51 (1.9) |
Number of CVD Risk Factors | Type of Obesity | N (%) | Wald χ2 | p | OR (95% CI) a |
---|---|---|---|---|---|
≥1 | |||||
Non-obesity | 5816 (65.6) | – | – | 1.00 | |
General obesity | 40 (76.9) | 5.27 | 0.022 | 2.27 (1.13, 4.56) | |
Central obesity | 5633 (86.1) | 449.19 | <0.001 | 2.64 (2.41, 2.89) | |
Compound obesity | 2453 (91.5) | 457.89 | <0.001 | 5.09 (4.38, 5.90) | |
≥2 | |||||
Non-obesity | 2545 (28.7) | – | – | 1.00 | |
General obesity | 21 (40.4) | 5.59 | 0.018 | 2.08 (1.13, 3.81) | |
Central obesity | 3548 (54.2) | 712.27 | <0.001 | 2.70 (2.51, 2.90) | |
Compound obesity | 1693 (63.2) | 876.62 | <0.001 | 4.35 (3.95, 4.79) | |
≥3 | |||||
Non-obesity | 639 (7.2) | – | – | 1.00 | |
General obesity | 5 (9.6) | 0.78 | 0.377 | 1.54 (0.59, 4.00) | |
Central obesity | 1148 (17.5) | 289.28 | <0.001 | 2.53 (2.28, 2.82) | |
Compound obesity | 551 (20.6) | 333.68 | <0.001 | 3.31 (2.91, 3.76) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Wang, R.; Gao, C.; Song, Y.; Lv, X.; Jiang, L.; Yu, Y.; Wang, Y.; Li, B. Types of Obesity and Its Association with the Clustering of Cardiovascular Disease Risk Factors in Jilin Province of China. Int. J. Environ. Res. Public Health 2016, 13, 685. https://doi.org/10.3390/ijerph13070685
Zhang P, Wang R, Gao C, Song Y, Lv X, Jiang L, Yu Y, Wang Y, Li B. Types of Obesity and Its Association with the Clustering of Cardiovascular Disease Risk Factors in Jilin Province of China. International Journal of Environmental Research and Public Health. 2016; 13(7):685. https://doi.org/10.3390/ijerph13070685
Chicago/Turabian StyleZhang, Peng, Rui Wang, Chunshi Gao, Yuanyuan Song, Xin Lv, Lingling Jiang, Yaqin Yu, Yuhan Wang, and Bo Li. 2016. "Types of Obesity and Its Association with the Clustering of Cardiovascular Disease Risk Factors in Jilin Province of China" International Journal of Environmental Research and Public Health 13, no. 7: 685. https://doi.org/10.3390/ijerph13070685