C#からIronPythonを呼び出すために、調べていた際にはまったことをメモ。 簡単なスクリプトやメソッドなら呼び出せるのですがimport numpyやimport waveなどを使用すると 下記のようなエラーが・・・ メッセージ内容を見ると IronPython.Runtime.Exceptions.ImportException はハンドルされませんでした。 Message=No module named numpy とのこと、 DLLのロードができていないようなのですが、 他のサイトでは連携の際に上記現象の記載がない方もいらっしゃるようでこのへんは謎です。 エラーの原因は、IronPythonでロードができていないようです。 強調された箇所を追加することによって実行ができるようになりました。 #もっといい手法あるような気がしますが、調べても出てこないので。。。 ソースは以下のよう
これまで、R で時系列解析を行ってきたので、Python でもできるよう手習いまで、コードを手で打ってみる。 1. ランダム・ウォーク と 移動平均線 時系列データ生成(ランダムウォーク系列) (参考) 分析技術とビジネスインテリジェンス 「Python:時系列分析(その1)」 上記サイトからスクリプトを借用します (※ plt.show() を最後に追加) import numpy as np randn = np.random.randn from pandas import * import matplotlib.pyplot as plt #■ランダムウォーク系列データの作成 ts = Series(randn(1000), index = DateRange('2000/1/1', periods = 1000)) ts = ts.cumsum() #■単純移動平均 長短のトレン
画像処理を行っていて、特徴量抽出に scikit-learn の PCA を使いましたが、様々な処理を行った後その結果から画像を復元したい(参考(これをpythonでやりたい):R prcomp での主成分分析結果から元データを復元する)。 具体的には以下のようなコードになっています。 from sklearn.decomposition import PCA from PIL import Image import numpy as np # loading image and convert to gray-scale imgAry = np.asarray(Image.open('image.png').convert('L')) print imgAry.shape # (224, 224) # doing pca decomposition pca = PCA(n_compone
学校の授業や資格のテストでは、「正規分布をしている」ことを前提に、検定や推定が行われることが多いですよね。 しかし、実際に自分でデータをとって分析する時は、当然ですが誰もそのデータ郡が「正規分布をしている」とは保証してくれないわけです。 そのため、データ解析を始めるその前に「正規性の検定(正規分布しているかどうかの確認)」をしなければなりません。 今回は、正規分布かどうかを見極めるための検定と手法を、Pythonを用いてやっていきたいと思います。 注)* 標準偏差・ヒストグラムなどを理解していない初学者の方はまずこちらから参照することをおすすめします。 www.ie-kau.net 目次:正規分布かどうか見極める手順 まずはサンプルデータの作成から ヒストグラムとQQプロットで視覚的に確認する 法則を使って正規性を検定する 1. まずはサンプルデータの作成から データがあったほうがわかりや
This webpage was generated by the domain owner using Sedo Domain Parking. Disclaimer: Sedo maintains no relationship with third party advertisers. Reference to any specific service or trade mark is not controlled by Sedo nor does it constitute or imply its association, endorsement or recommendation.
概要 Python で日時/タイムスタンプ関連の操作をする場合は dateutil や arrow を使っている人が多いと思うが、 pandas でもそういった処理がわかりやすく書けるよ、という話。 pandas の本領は多次元データの蓄積/変形/集約処理にあるが、日時操作に関連した強力なメソッド / ユーティリティもいくつか持っている。今回は それらを使って日時操作を簡単に行う方法を書いてく。ということで DataFrame も Series もでてこない pandas 記事のはじまり。 ※ ここでいう "日時/タイムスタンプ関連の操作" は文字列パース、日時加算/減算、タイムゾーン設定、条件に合致する日時のリスト生成などを想定。時系列補間/リサンプリングなんかはまた膨大になるので別途。 インストール 以下サンプルには 0.15での追加機能も含まれるため、0.15 以降が必要。 pip
1.5. Scipy: 高水準の科学技術計算¶ 著者: Adrien Chauve, Andre Espaze, Emmanuelle Gouillart, Gaël Varoquaux, Ralf Gommers Scipy scipy パッケージは科学技術計算での共通の問題のための多様なツールボックスがあります。サブモジュール毎に応用範囲が異なっています。応用範囲は例えば、補完、積分、最適化、画像処理、統計、特殊関数等。 scipy は GSL (GNU Scientific Library for C and C++) や Matlab のツールボックスのような他の標準的な科学技術計算ライブラリと比較されます。 scipy は Python での科学技術計算ルーチンの中核となるパッケージです; これは numpy の配列を効率良く扱っているということで、numpy と scipy は
Pythonで一番有名で普及しているライブラリと言っても過言ではない「Numpy」の覚書きです。かなり多機能な数値計算ライブラリで、内部はC言語で記述されているため超高速に動作します。 ベクトル ベクトルの長さ&正規化 import numpy a = numpy.array([[2,2]]) #ベクトルの長さ length = numpy.linalg.norm(a) #length=>2.8284271247461903 #ベクトルの正規化 a / numpy.linalg.norm(a) #=>array([[ 0.70710678, 0.70710678]]) 内積&外積 import numpy v1 = numpy.array((1,0,0)) v2 = numpy.array((0,1,0)) #内積 numpy.dot(v1,v2) #=> 0 #外積 numpy.cros
NumPy 配列の基礎¶ ここでは,NumPy で最も重要なクラスである np.ndarray について, 本チュートリアルの方針 の方針に従い,最低限必要な予備知識について説明します. np.ndarray は, N-d Array すなわち,N次元配列を扱うためのクラスです. NumPy を使わない場合, Python ではこうしたN次元配列を表現するには,多重のリストが利用されます. np.ndarray と多重リストには以下のような違いがあります. 多重リストはリンクでセルを結合した形式でメモリ上に保持されますが, np.ndarray は C や Fortran の配列と同様にメモリの連続領域上に保持されます. そのため,多重リストは動的に変更可能ですが, np.ndarray の形状変更には全体の削除・再生成が必要になります. 多重リストはリスト内でその要素の型が異なることが許
# 原文:http://www.scipy.org/Tentative_NumPy_Tutorial このチュートリアルを読む前に、Pythonについてちょっとは知っているべきだ。記憶をリフレッシュしたいと思うなら、Pythonチュートリアルを見てくるがいい。 このチュートリアルに出てくる例を試したいなら、あなたのPCに少なくとも Python NumPy はインストールされているべきで、他に入ってると便利なのは: ipython は拡張されたインタラクティブなPythonシェルで、NumPyの機能を探検するのにとても便利 matplotlib があると図表の描画が可能になる SciPy はNumPyの上で動く科学計算ルーチンを沢山用意してくれる 基礎 NumPy の主要なオブジェクトは、同じ型(普通は数)の要素のみから成り、正の整数のタプルで添字付けされた、均質なテーブル(というか多次元
Prerequisites� Before reading this tutorial you should know a bit of Python. If you would like to refresh your memory, take a look at the Python tutorial. If you wish to work the examples in this tutorial, you must also have some software installed on your computer. Please see http://scipy.org/install.html for instructions. The Basics� NumPy’s main object is the homogeneous multidimensional array.
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く