login
Search: a051868 -id:a051868
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 14*n + 1.
+0
4
1, 15, 29, 43, 57, 71, 85, 99, 113, 127, 141, 155, 169, 183, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 393, 407, 421, 435, 449, 463, 477, 491, 505, 519, 533, 547, 561, 575, 589, 603, 617, 631, 645, 659, 673, 687, 701, 715, 729
OFFSET
0,2
COMMENTS
Left column of triangle A131876.
Binomial transform of (1, 14, 0, 0, 0, ...).
Partial sums give A051868. - Leo Tavares, Mar 19 2023
FORMULA
a(n) = 14*n + 1.
From Elmo R. Oliveira, Apr 03 2024: (Start)
G.f.: (1+13*x)/(1-x)^2.
E.g.f.: exp(x)*(1 + 14*x).
a(n) = A051868(n+1) - A051868(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
EXAMPLE
a(2) = 29 = 2*14 + 1.
a(2) = 29 = (1, 2, 1) dot (1, 14, 0) = (1 + 28 + 0).
MATHEMATICA
Range[1, 1000, 14] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
CROSSREFS
Cf. A051868.
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 22 2007
STATUS
approved
Square array T(n,k) = n*(k-1)*k/2+k, of nonnegative numbers together with polygonal numbers, read by antidiagonals upwards.
+0
49
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 5, 9, 10, 5, 0, 1, 6, 12, 16, 15, 6, 0, 1, 7, 15, 22, 25, 21, 7, 0, 1, 8, 18, 28, 35, 36, 28, 8, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11
OFFSET
0,6
COMMENTS
A general formula for polygonal numbers is P(n,k) = (n-2)*(k-1)*k/2 + k, where P(n,k) is the k-th n-gonal number.
The triangle sums, see A180662 for their definitions, link this square array read by antidiagonals with twelve different sequences, see the crossrefs. Most triangle sums are linear sums of shifted combinations of a sequence, see e.g. A189374. - Johannes W. Meijer, Apr 29 2011
LINKS
Peter Luschny, Figurate number — a very short introduction. With plots from Stefan Friedrich Birkner.
Omar E. Pol, Polygonal numbers, An alternative illustration of initial terms.
FORMULA
T(n,k) = n*(k-1)*k/2+k.
T(n,k) = A057145(n+2,k). - R. J. Mathar, Jul 28 2016
From Stefano Spezia, Apr 12 2024: (Start)
G.f.: y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + x*y)/2. (End)
EXAMPLE
The square array of nonnegatives together with polygonal numbers begins:
=========================================================
....................... A A . . A A A A
....................... 0 0 . . 0 0 1 1
....................... 0 0 . . 1 1 3 3
....................... 0 0 . . 6 7 9 9
....................... 0 0 . . 9 3 6 6
....................... 0 1 . . 5 2 0 0
....................... 4 2 . . 7 9 6 7
=========================================================
Nonnegatives . A001477: 0, 1, 2, 3, 4, 5, 6, 7, ...
Triangulars .. A000217: 0, 1, 3, 6, 10, 15, 21, 28, ...
Squares ...... A000290: 0, 1, 4, 9, 16, 25, 36, 49, ...
Pentagonals .. A000326: 0, 1, 5, 12, 22, 35, 51, 70, ...
Hexagonals ... A000384: 0, 1, 6, 15, 28, 45, 66, 91, ...
Heptagonals .. A000566: 0, 1, 7, 18, 34, 55, 81, 112, ...
Octagonals ... A000567: 0, 1, 8, 21, 40, 65, 96, 133, ...
9-gonals ..... A001106: 0, 1, 9, 24, 46, 75, 111, 154, ...
10-gonals .... A001107: 0, 1, 10, 27, 52, 85, 126, 175, ...
11-gonals .... A051682: 0, 1, 11, 30, 58, 95, 141, 196, ...
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217, ...
...
=========================================================
The column with the numbers 2, 3, 4, 5, 6, ... is formed by the numbers > 1 of A000027. The column with the numbers 3, 6, 9, 12, 15, ... is formed by the positive members of A008585.
MAPLE
T:= (n, k)-> n*(k-1)*k/2+k:
seq(seq(T(d-k, k), k=0..d), d=0..14); # Alois P. Heinz, Oct 14 2018
MATHEMATICA
T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[T[n - k - 1, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
PROG
(Python)
def A139600Row(n):
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + n, y + n
for n in range(8):
R = A139600Row(n)
print([next(R) for _ in range(11)]) # Peter Luschny, Aug 04 2019
(Magma)
T:= func< n, k | k*(n*(k-1)+2)/2 >;
A139600:= func< n, k | T(n-k, k) >;
[A139600(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
(SageMath)
def T(n, k): return k*(n*(k-1)+2)/2
def A139600(n, k): return T(n-k, k)
flatten([[A139600(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024
CROSSREFS
A formal extension negative n is in A326728.
Triangle sums (see the comments): A055795 (Row1), A080956 (Row2; terms doubled), A096338 (Kn11, Kn12, Kn13, Fi1, Ze1), A002624 (Kn21, Kn22, Kn23, Fi2, Ze2), A000332 (Kn3, Ca3, Gi3), A134393 (Kn4), A189374 (Ca1, Ze3), A011779 (Ca2, Ze4), A101357 (Ca4), A189375 (Gi1), A189376 (Gi2), A006484 (Gi4). - Johannes W. Meijer, Apr 29 2011
Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).
KEYWORD
nonn,tabl,easy
AUTHOR
Omar E. Pol, Apr 27 2008
EXTENSIONS
Edited by Omar E. Pol, Jan 05 2009
STATUS
approved
Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.
+0
16
0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
OFFSET
0,6
COMMENTS
A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008
LINKS
Peter Luschny, Figurate number — a very short introduction. With plots from Stefan Friedrich Birkner.
Omar E. Pol, Polygonal numbers, An alternative illustration of initial terms.
FORMULA
T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008
T(n,k) = (n+1)*(k-1)*k/2 +k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009
From G. C. Greubel, Jul 12 2024: (Start)
t(n, k) = (k/2)*( (k-1)*(n-k+1) + 2), where t(n,k) is this array read by rising antidiagonals.
t(2*n, n) = A006003(n).
t(2*n+1, n) = A002411(n).
t(2*n-1, n) = A006000(n-1).
Sum_{k=0..n} t(n, k) = A006522(n+2).
Sum_{k=0..n} (-1)^k*t(n, k) = (-1)^n * A117142(n).
Sum_{k=0..n} t(n-k, k) = (2*n^4 + 34*n^2 + 48*n - 15 + 3*(-1)^n*(2*n^2 + 16*n + 5))/384. (End)
EXAMPLE
The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1, 3, 6, 10, 15, 21, 28,
Squares ...... A000290: 0, 1, 4, 9, 16, 25, 36, 49,
Pentagonals .. A000326: 0, 1, 5, 12, 22, 35, 51, 70,
Hexagonals ... A000384: 0, 1, 6, 15, 28, 45, 66, 91,
Heptagonals .. A000566: 0, 1, 7, 18, 34, 55, 81, 112,
Octagonals ... A000567: 0, 1, 8, 21, 40, 65, 96, 133,
9-gonals ..... A001106: 0, 1, 9, 24, 46, 75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52, 85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58, 95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
MATHEMATICA
T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
PROG
(Magma)
T:= func< n, k | k*((n+1)*(k-1) +2)/2 >;
A139601:= func< n, k | T(n-k, k) >;
[A139601(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
(SageMath)
def T(n, k): return k*((n+1)*(k-1)+2)/2
def A139601(n, k): return T(n-k, k)
flatten([[A139601(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024
CROSSREFS
Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).
KEYWORD
nonn,tabl,easy
AUTHOR
Omar E. Pol, Apr 27 2008
STATUS
approved
a(n) = n*(n+1)*(14*n-11)/6.
+0
4
0, 1, 17, 62, 150, 295, 511, 812, 1212, 1725, 2365, 3146, 4082, 5187, 6475, 7960, 9656, 11577, 13737, 16150, 18830, 21791, 25047, 28612, 32500, 36725, 41301, 46242, 51562, 57275, 63395, 69936, 76912, 84337, 92225, 100590, 109446, 118807, 128687
OFFSET
0,3
COMMENTS
Generated by the formula n*(n+1)*(2*d*n-(2*d-3))/6 for d=7.
From Bruno Berselli, Dec 14 2010: (Start)
In fact, the sequence is related to A001106 by a(n) = n*A001106(n) - Sum_{k=0..n-1} A001106(k) and this is the case d=7 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6.
Also 16-gonal (or hexadecagonal) pyramidal numbers.
Inverse binomial transform of this sequence: 0, 1, 15, 14, 0, 0 (0 continued). (End)
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. [From Bruno Berselli, Feb 13 2014]
LINKS
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
FORMULA
G.f.: x*(1+13*x)/(1-x)^4. - Bruno Berselli, Dec 15 2010
a(n) = Sum_{i=0..n} A051868(i). - Bruno Berselli, Dec 15 2010
a(n) = Sum_{i=0..n-1} (n-i)*(14*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 45*x + 14*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019
MAPLE
A172076:=n->n*(n+1)*(14*n-11)/6; seq(A172076(n), n=0..50); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 17, 62}, 50] (* Vincenzo Librandi, Mar 01 2012 *)
PROG
(PARI) vector(40, n, n*(n-1)*(14*n-25)/6) \\ G. C. Greubel, Aug 30 2019
(Magma) [n*(n+1)*(14*n-11)/6: n in [0..40]] // G. C. Greubel, Aug 30 2019
(Sage) [n*(n+1)*(14*n-11)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> n*(n+1)*(14*n-11)/6); # G. C. Greubel, Aug 30 2019
CROSSREFS
Cf. similar sequences listed in A237616.
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 25 2010
STATUS
approved
25-gonal numbers: a(n) = n*(23*n-21)/2.
+0
12
0, 1, 25, 72, 142, 235, 351, 490, 652, 837, 1045, 1276, 1530, 1807, 2107, 2430, 2776, 3145, 3537, 3952, 4390, 4851, 5335, 5842, 6372, 6925, 7501, 8100, 8722, 9367, 10035, 10726, 11440, 12177, 12937, 13720, 14526, 15355, 16207, 17082, 17980
OFFSET
0,3
COMMENTS
If b(n,k) = n*((k-2)*n-(k-4))/2 is n-th k-gonal number, then b(n,k) = A000217(n) + (k-3)* A000217(n-1) (see Deza in References section, page 21, where the formula is attributed to Bachet de Méziriac).
Also, b(n,k) = b(n,k-1) + A000217(n-1) (see Deza and Picutti in References section, page 20 and 137 respectively, where the formula is attributed to Nicomachus). Some examples:
for k=4, A000290(n) = A000217(n) + A000217(n-1);
for k=5, A000326(n) = A000290(n) + A000217(n-1);
for k=6, A000384(n) = A000326(n) + A000217(n-1), etc.
This is the case k=25.
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (23rd row of the table).
E. Picutti, Sul numero e la sua storia, Feltrinelli Economica (1977), pages 131-147.
FORMULA
G.f.: x*(-1 - 22*x)/(-1 + x)^3.
a(n) = A000217(n) + 22*A000217(n-1) = A051876(n) + A000217(n-1), see comments.
Product_{n>=2} (1 - 1/a(n)) = 23/25. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 23*x^2/2). - Nikolaos Pantelidis, Feb 05 2023
MATHEMATICA
Table[n (23 n - 21)/2, {n, 40}]
PROG
(Magma) k:=25; [n*((k-2)*n-(k-4))/2: n in [0..40]]; // Bruno Berselli, Apr 10 2015
(PARI) a(n)=n*(23*n-21)/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. k-gonal numbers: A000217 (k=3), A000290 (k=4), A000326 (k=5), A000384 (k=6), A000566 (k=7), A000567 (k=8), A001106 (k=9), A001107 (k=10), A051682 (k=11), A051624 (k=12), A051865 (k=13), A051866 (k=14), A051867 (k=15), A051868 (k=16), A051869 (k=17), A051870 (k=18), A051871 (k=19), A051872 (k=20), A051873 (k=21), A051874 (k=22), A051875 (k=23), A051876 (k=24), this sequence (k=25), A255185 (k=26), A255186 (k=27), A161935 (k=28), A255187 (k=29), A254474 (k=30).
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 03 2015
STATUS
approved
30-gonal pyramidal numbers: a(n) = n*(n+1)*(28*n-25)/6.
+0
2
0, 1, 31, 118, 290, 575, 1001, 1596, 2388, 3405, 4675, 6226, 8086, 10283, 12845, 15800, 19176, 23001, 27303, 32110, 37450, 43351, 49841, 56948, 64700, 73125, 82251, 92106, 102718, 114115, 126325, 139376, 153296, 168113, 183855, 200550, 218226, 236911, 256633
OFFSET
0,3
COMMENTS
See comments in A256645.
This sequence is related to A051868 by a(n) = n*A051868(n) - Sum_{i=0..n-1} A051868(i). [Bruno Berselli, Apr 09 2015]
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (28th row of the table).
FORMULA
G.f.: x*(1 + 27*x)/(1 - x)^4.
a(n) = A000292(n) + 27*A000292(n-1).
MATHEMATICA
Table[n (n + 1) (28 n - 25)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 31, 118}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
PROG
(Magma) [n*(n+1)*(28*n-25)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
CROSSREFS
Partial sums of A254474.
Cf. similar sequences listed in A237616.
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 07 2015
STATUS
approved
Integers of the form m*(m + 6)/7.
+0
32
0, 1, 13, 16, 40, 45, 81, 88, 136, 145, 205, 216, 288, 301, 385, 400, 496, 513, 621, 640, 760, 781, 913, 936, 1080, 1105, 1261, 1288, 1456, 1485, 1665, 1696, 1888, 1921, 2125, 2160, 2376, 2413, 2641, 2680, 2920, 2961, 3213, 3256, 3520, 3565, 3841, 3888, 4176, 4225, 4525, 4576
OFFSET
1,3
COMMENTS
Nonnegative values of m are listed in A047274.
Also, numbers h such that 7*h + 9 is a square.
Equivalently, numbers of the form i*(7*i - 6) with i = 0, 1, -1, 2, -2, 3, -3, ...
Infinitely many squares belong to this sequence.
Generalized 16-gonal (or hexadecagonal) numbers. See the third comment. - Omar E. Pol, Jun 06 2018
Partial sums of A317312. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(14*n-13))*(1 + x^(14*n-1))*(1 - x^(14*n)) = 1 + x + x^13 + x^16+ x^40 + .... - Peter Bala, Dec 10 2020
FORMULA
O.g.f.: x^2*(1 + 12*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (5*(2*x + 1)*exp(-x) + (14*x^2 - 5)*exp(x))/8.
a(n) = (14*(n-1)*n - 5*(2*n-1)*(-1)^n - 5)/8.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 6. - Wesley Ivan Hurt, Dec 18 2020
Sum_{n>=2} 1/a(n) = (7 + 6*Pi*cot(Pi/7))/36. - Amiram Eldar, Feb 28 2022
EXAMPLE
88 is in the sequence because 88 = 22*(22+6)/7 or also 88 = 4*(7*4-6).
MATHEMATICA
Select[m = Range[0, 200]; m (m + 6)/7, IntegerQ] (* Jean-François Alcover, Jul 21 2016 *)
Select[Table[(n(n+6))/7, {n, 0, 200}], IntegerQ] (* Harvey P. Dale, Sep 20 2022 *)
PROG
(Sage)
def A274978_list(len):
h = lambda m: m*(m+6)/7
return [h(m) for m in (0..len) if h(m) in ZZ]
print(A274978_list(179)) # Peter Luschny, Jul 18 2016
(Magma) [t: m in [0..200] | IsIntegral(t) where t is m*(m+6)/7];
CROSSREFS
Supersequence of A051868.
Cf. A317312.
Cf. sequences of the form m*(m+k)/(k+1): A000290 (k=0), A000217 (k=1), A001082 (k=2), A074377 (k=3), A195162 (k=4), A144065 (k=5), A274978 (k=6), A274979 (k=7), A218864 (k=8).
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), this sequence (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jul 15 2016
STATUS
approved
Square array T(n,k) = (n - 2)*(k - 1)*k/2 + k, with n >= 0, k >= 0, read by antidiagonals upwards.
+0
5
0, 0, 1, 0, 1, 0, 0, 1, 1, -3, 0, 1, 2, 0, -8, 0, 1, 3, 3, -2, -15, 0, 1, 4, 6, 4, -5, -24, 0, 1, 5, 9, 10, 5, -9, -35, 0, 1, 6, 12, 16, 15, 6, -14, -48, 0, 1, 7, 15, 22, 25, 21, 7, -20, -63, 0, 1, 8, 18, 28, 35, 36, 28, 8, -27, -80, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, -35, -99, 0, 1, 10, 24, 40, 55, 66
OFFSET
0,10
COMMENTS
Note that the formula gives several kinds of numbers, for example:
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the nonnegative numbers.
For n >= 3, row n gives the n-gonal numbers (see Crossrefs section).
LINKS
Omar E. Pol, Polygonal numbers.
University of Surrey, Dept. of Mathematics, Polygonal Numbers - or Numbers as Shapes.
Eric Weisstein's World of Mathematics, Figurate Number.
Eric Weisstein's World of Mathematics, Polygonal Number.
Wikipedia, Polygonal number.
FORMULA
T(n,k) = A139600(n-2,k) if n >= 2.
T(n,k) = A139601(n-3,k) if n >= 3.
EXAMPLE
Array begins:
------------------------------------------------------------------------
n\k Numbers Seq. No. 0 1 2 3 4 5 6 7 8
------------------------------------------------------------------------
0 ............ (A258837): 0, 1, 0, -3, -8, -15, -24, -35, -48, ...
1 ............ (A080956): 0, 1, 1, 0, -2, -5, -9, -14, -20, ...
2 Nonnegatives A001477: 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
3 Triangulars A000217: 0, 1, 3, 6, 10, 15, 21, 28, 36, ...
4 Squares A000290: 0, 1, 4, 9, 16, 25, 36, 49, 64, ...
5 Pentagonals A000326: 0, 1, 5, 12, 22, 35, 51, 70, 92, ...
6 Hexagonals A000384: 0, 1, 6, 15, 28, 45, 66, 91, 120, ...
7 Heptagonals A000566: 0, 1, 7, 18, 34, 55, 81, 112, 148, ...
8 Octagonals A000567: 0, 1, 8, 21, 40, 65, 96, 133, 176, ...
9 9-gonals A001106: 0, 1, 9, 24, 46, 75, 111, 154, 204, ...
10 10-gonals A001107: 0, 1, 10, 27, 52, 85, 126, 175, 232, ...
11 11-gonals A051682: 0, 1, 11, 30, 58, 95, 141, 196, 260, ...
12 12-gonals A051624: 0, 1, 12, 33, 64, 105, 156, 217, 288, ...
13 13-gonals A051865: 0, 1, 13, 36, 70, 115, 171, 238, 316, ...
14 14-gonals A051866: 0, 1, 14, 39, 76, 125, 186, 259, 344, ...
15 15-gonals A051867: 0, 1, 15, 42, 82, 135, 201, 280, 372, ...
...
CROSSREFS
Column 0 gives A000004.
Column 1 gives A000012.
Column 2 gives A001477, which coincides with the row numbers.
Main diagonal gives A060354.
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the same as column 2.
For n >= 3, row n gives the n-gonal numbers: A000217 (n=3), A000290 (n=4), A000326 (n=5), A000384 (n=6), A000566 (n=7), A000567 (n=8), A001106 (n=9), A001107 (n=10), A051682 (n=11), A051624 (n=12), A051865 (n=13), A051866 (n=14), A051867 (n=15), A051868 (n=16), A051869 (n=17), A051870 (n=18), A051871 (n=19), A051872 (n=20), A051873 (n=21), A051874 (n=22), A051875 (n=23), A051876 (n=24), A255184 (n=25), A255185 (n=26), A255186 (n=27), A161935 (n=28), A255187 (n=29), A254474 (n=30).
Cf. A303301 (similar table but with generalized polygonal numbers).
KEYWORD
sign,tabl,easy
AUTHOR
Omar E. Pol, Aug 09 2018
STATUS
approved
Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).
+0
0
0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
OFFSET
1,7
COMMENTS
\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.
LINKS
E. Deza and M. Deza, Figurate Numbers, World Scientific, 2012; see p. 45.
Eric Weisstein's World of Mathematics, Polygonal Number.
Wikipedia, Polygonal number.
FORMULA
P(r, c) = (r - 2)(c(c-1)/2) + c.
MATHEMATICA
Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten
CROSSREFS
Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.
KEYWORD
easy,sign,tabl
AUTHOR
Robert G. Wilson v, Apr 27 2020
STATUS
approved
32-gonal numbers: a(n) = n*(15*n-14).
+0
1
0, 1, 32, 93, 184, 305, 456, 637, 848, 1089, 1360, 1661, 1992, 2353, 2744, 3165, 3616, 4097, 4608, 5149, 5720, 6321, 6952, 7613, 8304, 9025, 9776, 10557, 11368, 12209, 13080, 13981, 14912, 15873, 16864, 17885, 18936, 20017, 21128, 22269, 23440, 24641, 25872
OFFSET
0,3
FORMULA
G.f.: x*(1 + 29*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 15*x^2).
MATHEMATICA
Table[n (15 n - 14), {n, 30}]
PROG
(PARI) a(n)=n*(15*n-14) \\ Charles R Greathouse IV, Feb 07 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Nikolaos Pantelidis, Feb 07 2023
STATUS
approved

Search completed in 0.013 seconds