of the polygons).
.
, i.e.
. This number is composite, with nontrivial factorization
.
respectively.
. So,
.
, i.e.
. Note that while
are necessarily composite, unfortunately the converse is not true: not all composite numbers are
.
.
.
, i.e.
are missing (since they are nontrivial polygonal numbers).
.
.
as a polygonal number.
ways.
-gonal number.
if this equation has no solution.
).
Numbers which are not regular figurative or polygonal numbers of order greater than
. That is, numbers not of the form
.
For example, the trigonal roots (i.e. triangular roots) of
the tetragonal roots (i.e. square roots) of
.
One can verify that the triangular roots of
.
i.e.
.
Schläfli–Poincaré generalization of the Descartes–Euler (convex) polyhedral formula.[3]
) of the convex polygon.
we need as many terms as the class number, for each congruence classes, e.g. for
In 1638, Fermat proposed that every positive integer is a sum of at most three triangular numbers, four square numbers, five pentagonal numbers, and
-gonal numbers. Fermat claimed to have a proof of this result, although Fermat’s proof has never been found.
) in 1770 and Gauss proved the triangular case in 1796. In 1813, Cauchy finally proved the horizontal generalization that every nonnegative integer can be written as a sum of
), while a vertical (higher dimensional) generalization has also been made (known as the
).
A nonempty subset
is the minimum number with the property that every nonnegative integer can be written as a sum of
. Lagrange’s sum of four squares can be restated as the set
, i.e. every nonnegative integer can be written as a sum of
-gon numbers.
We note that polygonal numbers are two dimensional analogues of squares. Obviously, cubes, fourth powers, fifth powers, ... are higher dimensional analogues of squares. In 1770, Waring stated without proof that every nonnegative integer can be written as a sum of
fourth powers, and so on. In 1909, Hilbert proved that there is a finite number
powers, i.e. the set
. The Hilbert–Waring problem
. This problem was one of the most important research topics in additive number theory in last 90 years, and it is still a very active area of research.
.
-gonal pyramidal number.
is the digamma function.
, i.e. the random integer
is squarefree.
are the number of vertices (0-dimensional) and edges (1-dimensional) respectively, where the edges are the actual facets. The regular Platonic numbers are listed by increasing number
of facets, or sides of the polygons.
Polygonal numbers related formulae and values
|
Name
Schläfli symbol[14]
|
Generating function
x [(N0 − 3) x + 1] | (1 − x) 3 |
|
|
Order of basis
[5]
|
Differences Gnomonic numbers
|
Partial sums
|
Partial sums of reciprocals
2 ψ m + − ψ (m + 1) − ψ − γ | (N0 − 4) | , |
|
Sum of Reciprocals[15][16]
|
3
|
Triangular
(3, 3)
{3}
|
|
3
|
|
|
|
|
4
|
Square
(4, 4)
{4}
|
|
4
|
|
|
[17]
|
[18]
Base 10: A013661
|
5
|
Pentagonal
(5, 5)
{5}
|
|
5
|
|
|
|
|
6
|
Hexagonal
(6, 6)
{6}
|
|
6
|
|
|
|
|
7
|
Heptagonal
(7, 7)
{7}
|
|
7
|
|
|
|
|
8
|
Octagonal
(8, 8)
{8}
|
|
8
|
|
|
|
|
9
|
9-gonal
(9, 9)
{9}
|
|
9
|
|
|
|
|
10
|
10-gonal
(10, 10)
{10}
|
|
10
|
|
|
|
|
11
|
11-gonal
(11, 11)
{11}
|
|
11
|
|
|
|
|
12
|
12-gonal
(12, 12)
{12}
|
|
12
|
|
|
|
|
13
|
13-gonal
(13, 13)
{13}
|
|
13
|
|
|
|
|
14
|
14-gonal
(14, 14)
{14}
|
|
14
|
|
|
|
|
15
|
15-gonal
(15, 15)
{15}
|
|
15
|
|
|
|
|
16
|
16-gonal
(16, 16)
{16}
|
|
16
|
|
|
|
|
17
|
17-gonal
(17, 17)
{17}
|
|
17
|
|
|
|
|
18
|
18-gonal
(18, 18)
{18}
|
|
18
|
|
|
|
|
19
|
19-gonal
(19, 19)
{19}
|
|
19
|
|
|
|
|
20
|
20-gonal
(20, 20)
{20}
|
|
20
|
|
|
|
|
21
|
21-gonal
(21, 21)
{21}
|
|
21
|
|
|
|
|
22
|
22-gonal
(22, 22)
{22}
|
|
22
|
|
|
|
|
23
|
23-gonal
(23, 23)
{23}
|
|
23
|
|
|
|
|
24
|
24-gonal
(24, 24)
{24}
|
|
24
|
|
|
|
|
25
|
25-gonal
(25, 25)
{25}
|
|
25
|
|
|
|
|
26
|
26-gonal
(26, 26)
{26}
|
|
26
|
|
|
|
|
27
|
27-gonal
(27, 27)
{27}
|
|
27
|
|
|
|
|
28
|
28-gonal
(28, 28)
{28}
|
|
28
|
|
|
|
|
29
|
29-gonal
(29, 29)
{29}
|
|
29
|
|
|
|
|
30
|
30-gonal
(30, 30)
{30}
|
|
30
|
|
|
|
|
Polygonal numbers sequences
|
|
A-numbers
|
3
|
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, ...
|
A000217
|
4
|
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, ...
|
A000290
|
5
|
0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, ...
|
A000326
|
6
|
0, 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, ...
|
A000384
|
7
|
0, 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, 1918, 2059, ...
|
A000566
|
8
|
0, 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936, 1045, 1160, 1281, 1408, 1541, 1680, 1825, 1976, 2133, 2296, 2465, ...
|
A000567
|
9
|
0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, ...
|
A001106
|
10
|
0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, ...
|
A001107
|
11
|
0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, ...
|
A051682
|
12
|
0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, 1920, 2121, 2332, 2553, 2784, 3025, 3276, 3537, 3808, ...
|
A051624
|
13
|
0, 1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, 738, 871, 1015, 1170, 1336, 1513, 1701, 1900, 2110, 2331, 2563, 2806, 3060, 3325, 3601, 3888, 4186, ...
|
A051865
|
14
|
0, 1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, 804, 949, 1106, 1275, 1456, 1649, 1854, 2071, 2300, 2541, 2794, 3059, 3336, 3625, 3926, 4239, 4564, ...
|
A051866
|
15
|
0, 1, 15, 42, 82, 135, 201, 280, 372, 477, 595, 726, 870, 1027, 1197, 1380, 1576, 1785, 2007, 2242, 2490, 2751, 3025, 3312, 3612, 3925, 4251, 4590, ...
|
A051867
|
16
|
0, 1, 16, 45, 88, 145, 216, 301, 400, 513, 640, 781, 936, 1105, 1288, 1485, 1696, 1921, 2160, 2413, 2680, 2961, 3256, 3565, 3888, 4225, 4576, 4941, ...
|
A051868
|
17
|
0, 1, 17, 48, 94, 155, 231, 322, 428, 549, 685, 836, 1002, 1183, 1379, 1590, 1816, 2057, 2313, 2584, 2870, 3171, 3487, 3818, 4164, 4525, 4901, 5292, ...
|
A051869
|
18
|
0, 1, 18, 51, 100, 165, 246, 343, 456, 585, 730, 891, 1068, 1261, 1470, 1695, 1936, 2193, 2466, 2755, 3060, 3381, 3718, 4071, 4440, 4825, 5226, 5643, ...
|
A051870
|
19
|
0, 1, 19, 54, 106, 175, 261, 364, 484, 621, 775, 946, 1134, 1339, 1561, 1800, 2056, 2329, 2619, 2926, 3250, 3591, 3949, 4324, 4716, 5125, 5551, 5994, ...
|
A051871
|
20
|
0, 1, 20, 57, 112, 185, 276, 385, 512, 657, 820, 1001, 1200, 1417, 1652, 1905, 2176, 2465, 2772, 3097, 3440, 3801, 4180, 4577, 4992, 5425, 5876, 6345, ...
|
A051872
|
21
|
0, 1, 21, 60, 118, 195, 291, 406, 540, 693, 865, 1056, 1266, 1495, 1743, 2010, 2296, 2601, 2925, 3268, 3630, 4011, 4411, 4830, 5268, 5725, 6201, 6696, ...
|
A051873
|
22
|
0, 1, 22, 63, 124, 205, 306, 427, 568, 729, 910, 1111, 1332, 1573, 1834, 2115, 2416, 2737, 3078, 3439, 3820, 4221, 4642, 5083, 5544, 6025, 6526, 7047, ...
|
A051874
|
23
|
0, 1, 23, 66, 130, 215, 321, 448, 596, 765, 955, 1166, 1398, 1651, 1925, 2220, 2536, 2873, 3231, 3610, 4010, 4431, 4873, 5336, 5820, 6325, 6851, 7398, ...
|
A051875
|
24
|
0, 1, 24, 69, 136, 225, 336, 469, 624, 801, 1000, 1221, 1464, 1729, 2016, 2325, 2656, 3009, 3384, 3781, 4200, 4641, 5104, 5589, 6096, 6625, 7176, 7749, ...
|
A051876
|
25
|
0, 1, 25, 72, 142, 235, 351, 490, 652, 837, 1045, 1276, 1530, 1807, 2107, 2430, 2776, 3145, 3537, 3952, 4390, 4851, 5335, 5842, 6372, 6925, 7501, 8100, ...
|
A255184
|
26
|
0, 1, 26, 75, 148, 245, 366, 511, 680, 873, 1090, 1331, 1596, 1885, 2198, 2535, 2896, 3281, 3690, 4123, 4580, 5061, 5566, 6095, 6648, 7225, 7826, 8451, ...
|
A255185
|
27
|
0, 1, 27, 78, 154, 255, 381, 532, 708, 909, 1135, 1386, 1662, 1963, 2289, 2640, 3016, 3417, 3843, 4294, 4770, 5271, 5797, 6348, 6924, 7525, 8151, 8802, ...
|
A255186
|
28
|
0, 1, 28, 81, 160, 265, 396, 553, 736, 945, 1180, 1441, 1728, 2041, 2380, 2745, 3136, 3553, 3996, 4465, 4960, 5481, 6028, 6601, 7200, 7825, 8476, 9153, ...
|
A161935
|
29
|
0, 1, 29, 84, 166, 275, 411, 574, 764, 981, 1225, 1496, 1794, 2119, 2471, 2850, 3256, 3689, 4149, 4636, 5150, 5691, 6259, 6854, 7476, 8125, 8801, 9504, ...
|
A255187
|
30
|
0, 1, 30, 87, 172, 285, 426, 595, 792, 1017, 1270, 1551, 1860, 2197, 2562, 2955, 3376, 3825, 4302, 4807, 5340, 5901, 6490, 7107, 7752, 8425, 9126, 9855, ...
|
A254474
|