login
Search: keyword:new
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of subwords of the form UDD in nondecreasing Dyck paths of length 2n.
+0
0
0, 0, 1, 4, 14, 45, 138, 411, 1200, 3454, 9836, 27779, 77938, 217493, 604222, 1672246, 4613030, 12689265, 34817418, 95320335, 260436588, 710278318, 1933906496, 5257545599, 14273273314, 38699274665, 104799960058, 283487736166, 766045036730, 2067997219629, 5577597593466, 15030365074659, 40470488092008
OFFSET
0,4
COMMENTS
A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
a(n) also represents the number of subwords of the form UUDDD in nondecreasing Dyck paths of length 2n.
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170 (1997), 211-217.
Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
FORMULA
a(n) = (2*F(2*n-3) + n*L(2*n-3) + 2*L(2*n-2) - 5*2^(n-2))/5 for n>=2, where F(n) = A000045(n) and L(n) = A000032(n).
G.f.: x^2*(1-x)*(x^3-2*x^2+3*x-1)/((2*x-1)*(x^2-3*x+1)^2). - Alois P. Heinz, Nov 03 2024
MATHEMATICA
Table[If[n<2, 0, (2*Fibonacci[2n-3] + n*LucasL[2n-3]+2 LucasL[2n-2]-5*2^(n-2))/5], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Rigoberto Florez, Nov 03 2024
STATUS
approved
Number of subwords of the form DDD in nondecreasing Dyck paths of length 2n.
+0
0
0, 0, 0, 1, 6, 26, 97, 333, 1085, 3411, 10448, 31376, 92773, 270907, 783003, 2243815, 6383550, 18048494, 50755897, 142067625, 396014681, 1099863867, 3044737100, 8404071596, 23135752141, 63538808311, 174120317367, 476207551183
OFFSET
0,5
COMMENTS
A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170 (1997), 211-217.
Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
FORMULA
a(n) = n*F(2*n-3) - L(2*n-2) + 2^(n-2) for n>=2, where F(n) = A000045(n) and L(n) = A000032(n).
G.f.: x^3*(1 - 2*x + x^2 - x^3)/((1 - 2*x)*(1 - 3*x + x^2)^2).
MATHEMATICA
Table[If[n<2, 0, n Fibonacci[2 n-3]-LucalL[2 n-2]+2^(n-2)], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Rigoberto Florez, Nov 03 2024
STATUS
approved
Powerful numbers that are divisible by the cube of a single prime.
+0
0
8, 16, 27, 32, 64, 72, 81, 108, 125, 128, 144, 200, 243, 256, 288, 324, 343, 392, 400, 500, 512, 576, 625, 675, 729, 784, 800, 968, 972, 1024, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1600, 1800, 1936, 2025, 2048, 2187, 2197, 2304, 2312, 2401, 2500, 2700, 2704, 2888, 2916
OFFSET
1,1
COMMENTS
Numbers whose prime factorization contains one exponent that equals 3, and all the others, if they exist, are equal to 2.
FORMULA
Sum_{n>=1} 1/a(n) = (15/Pi^2) * Sum_{p prime} 1/((p-1)*(p^2+1))) = 0.40258439321745859629... .
MATHEMATICA
q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]]]}, e[[-1]] > 2 && (Length[e] == 1 || e[[-2]] == 2)]; With[{max = 3000}, Select[Union@ Flatten@Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], q]]
PROG
(PARI) is(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2])); e[1] > 1 && e[#e] > 2 && (#e == 1 || e[#e - 1] == 2));
CROSSREFS
Subsequence of A001694, A320966 and A377846.
A030078 is a subsequence.
Cf. A082020.
KEYWORD
nonn,easy,new
AUTHOR
Amiram Eldar, Nov 09 2024
STATUS
approved
Powerful numbers that are not divisible by the cubes of more than one distinct prime.
+0
0
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 441, 484, 500, 512, 529, 576, 625, 675, 676, 729, 784, 800, 841, 900, 961, 968, 972, 1024, 1089, 1125, 1152, 1156, 1225
OFFSET
1,2
COMMENTS
Subsequence of A377821 and first differs from it at n = 33: A377821(33) = 432 = 2^4 * 3^3 is not a term of this sequence.
Numbers whose prime factorization has exponents that are all larger than 1 and no more than one exponent is larger than 2.
FORMULA
Sum_{n>=1} 1/a(n) = (15/Pi^2) * (1 + Sum_{p prime} 1/((p-1)*(p^2+1))) = 1.92240214785252516795... .
MATHEMATICA
q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]]]}, Length[e] == 1 || e[[-2]] == 2]; With[{max = 1300}, Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], # == 1 || q[#] &]]
PROG
(PARI) is(k) = if(k == 1, 1, my(e = vecsort(factor(k)[, 2])); e[1] > 1 && (#e == 1 || e[#e - 1] == 2));
CROSSREFS
Complement of A376936 within A001694.
Subsequence of A377821.
Subsequences: A143610, A377847.
Cf. A082020.
KEYWORD
nonn,easy,new
AUTHOR
Amiram Eldar, Nov 09 2024
STATUS
approved
Numbers k such that (21^k + 2^k)/23 is prime.
+0
0
11, 17, 47, 2663
OFFSET
1,1
COMMENTS
The definition implies that k must be a prime.
a(5) > 10^5.
LINKS
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
Eric Weisstein's World of Mathematics, Repunit.
MATHEMATICA
Select[Prime[Range[10000]], PrimeQ[(21^# + 2^#)/23] &]
KEYWORD
nonn,hard,more,new
AUTHOR
Robert Price, Nov 09 2024
STATUS
approved
a(n) = Sum_{k=1..n} tan(k*Pi/(1+2*n))^4.
+0
0
0, 9, 90, 371, 1044, 2365, 4654, 8295, 13736, 21489, 32130, 46299, 64700, 88101, 117334, 153295, 196944, 249305, 311466, 384579, 469860, 568589, 682110, 811831, 959224, 1125825, 1313234, 1523115, 1757196, 2017269, 2305190, 2622879, 2972320, 3355561, 3774714
OFFSET
0,2
REFERENCES
Shigeichi Moriguchi, Kanehisa Udagawa, Shin Hitotsumatsu, "Mathematics Formulas II", Iwanami Shoten, Publishers (1957), p. 14.
FORMULA
a(n) = n * (2*n+1) * (4*n^2+6*n-1)/3.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: x * (9 + 45*x + 11*x^2 - x^3)/(1 - x)^5.
E.g.f.: exp(x)*x*(27 + 108*x + 64*x^2 + 8*x^3)/3. - Stefano Spezia, Nov 10 2024
PROG
(PARI) a(n) = n*(2*n+1)*(4*n^2+6*n-1)/3;
(PARI) my(N=40, x='x+O('x^N)); concat(0, Vec(x*(9+45*x+11*x^2-x^3)/(1-x)^5))
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Seiichi Manyama, Nov 09 2024
STATUS
approved
Numbers that have more than one odd exponent larger than 1 in their prime factorization.
+0
0
216, 864, 1000, 1080, 1512, 1944, 2376, 2744, 2808, 3000, 3375, 3456, 3672, 4000, 4104, 4320, 4968, 5400, 6048, 6264, 6696, 6750, 7000, 7560, 7776, 7992, 8232, 8856, 9000, 9261, 9288, 9504, 9720, 10152, 10584, 10648, 10976, 11000, 11232, 11448, 11880, 12000, 12744, 13000
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p^2*(p+1))) * (1 + Sum_{p prime} (1/(p^3+p^2-1))) = 0.0035024748296318122535... .
LINKS
MATHEMATICA
q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] > 1; Select[Range[13000], q]
PROG
(PARI) is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) > 1;
CROSSREFS
Complement of the union of A335275 and A377844.
Subsequence of A295661.
Subsequences: A162142, A179671, A190011.
Cf. A065465.
KEYWORD
nonn,easy,new
AUTHOR
Amiram Eldar, Nov 09 2024
STATUS
approved
Numbers that have a single odd exponent larger than 1 in their prime factorization.
+0
0
8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500
OFFSET
1,1
COMMENTS
First differs from A295661, A325990 and A376142 at n = 24: A295661(24) = A325990(24) = A376142(24) = 216 = 2^3 * 3^3 is not a term of this sequence.
Differs from A060476 by having the terms 432, 648, 1728, ..., and not having the terms 1, 216, 256, 768, 864, ... .
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) * Sum_{p prime} (1/(p^3+p^2-1)) = 0.11498368544519741081... .
LINKS
MATHEMATICA
q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] == 1; Select[Range[500], q]
PROG
(PARI) is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) == 1;
CROSSREFS
Subsequence of A295661.
Subsequences: A065036, A143610, A163569.
KEYWORD
nonn,easy,new
AUTHOR
Amiram Eldar, Nov 09 2024
STATUS
approved
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^2 * exp(x) ).
+0
0
1, 1, 5, 44, 577, 10104, 222133, 5886880, 182775969, 6509571200, 261665344261, 11720054882304, 578878362625825, 31259890045425664, 1832295378792935925, 115862322601669627904, 7861907382202262095297, 569837358810005613281280, 43939338917141224534941829
OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies A(x) = exp(-x * A(x))/(1 - x*A(x))^2.
a(n) = n! * Sum_{k=0..n} (-1)^k * (n+1)^(k-1) * binomial(3*n-k+1,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (-1)^k*(n+1)^(k-1)*binomial(3*n-k+1, n-k)/k!);
CROSSREFS
Cf. A377832.
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 09 2024
STATUS
approved
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^3 * exp(x) ).
+0
0
1, 2, 15, 206, 4193, 113904, 3882511, 159475280, 7672503681, 423360926720, 26362968645071, 1829066086810368, 139929538526047585, 11703312997355442176, 1062423600515479191375, 104042389901715413633024, 10933256593926589800851969, 1227201235266954603172331520
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies A(x) = exp(-x * A(x))/(1 - x*A(x))^3.
a(n) = n! * Sum_{k=0..n} (-1)^k * (n+1)^(k-1) * binomial(4*n-k+2,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (-1)^k*(n+1)^(k-1)*binomial(4*n-k+2, n-k)/k!);
CROSSREFS
Cf. A377833.
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 09 2024
STATUS
approved

Search completed in 0.128 seconds