login
Search: a139600 -id:a139600
     Sort: relevance | references | number | modified | created      Format: long | short | data
Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24.
(Formerly M3853 N1578)
+10
393
0, 0, 0, 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 31465, 35960, 40920, 46376, 52360, 58905, 66045, 73815, 82251, 91390, 101270, 111930, 123410
OFFSET
0,6
COMMENTS
Number of intersection points of diagonals of convex n-gon where no more than two diagonals intersect at any point in the interior.
Also the number of equilateral triangles with vertices in an equilateral triangular array of points with n rows (offset 1), with any orientation. - Ignacio Larrosa Cañestro, Apr 09 2002. [See Les Reid link for proof. - N. J. A. Sloane, Apr 02 2016]
Start from cubane and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink on chemistry. - Robert G. Wilson v, Aug 02 2002
For n>0, a(n) = (-1/8)*(coefficient of x in Zagier's polynomial P_(2n,n)). (Zagier's polynomials are used by PARI/GP for acceleration of alternating or positive series.)
Figurate numbers based on the 4-dimensional regular convex polytope called the regular 4-simplex, pentachoron, 5-cell, pentatope or 4-hypertetrahedron with Schlaefli symbol {3,3,3}. a(n)=((n*(n-1)*(n-2)*(n-3))/4!). - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004, R. J. Mathar, Jul 07 2009
Maximal number of crossings that can be created by connecting n vertices with straight lines. - Cameron Redsell-Montgomerie (credsell(AT)uoguelph.ca), Jan 30 2007
If X is an n-set and Y a fixed (n-1)-subset of X then a(n) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Product of four consecutive numbers divided by 24. - Artur Jasinski, Dec 02 2007
The only prime in this sequence is 5. - Artur Jasinski, Dec 02 2007
For strings consisting entirely of 0's and 1's, the number of distinct arrangements of four 1's such that 1's are not adjacent. The shortest possible string is 7 characters, of which there is only one solution: 1010101, corresponding to a(5). An eight-character string has 5 solutions, nine has 15, ten has 35 and so on, congruent to A000332. - Gil Broussard, Mar 19 2008
For a(n)>0, a(n) is pentagonal if and only if 3 does not divide n. All terms belong to the generalized pentagonal sequence (A001318). Cf. A000326, A145919, A145920. - Matthew Vandermast, Oct 28 2008
Nonzero terms = row sums of triangle A158824. - Gary W. Adamson, Mar 28 2009
Except for the 4 initial 0's, is equivalent to the partial sums of the tetrahedral numbers A000292. - Jeremy Cahill (jcahill(AT)inbox.com), Apr 15 2009
If the first 3 zeros are disregarded, that is, if one looks at binomial(n+3, 4) with n>=0, then it becomes a 'Matryoshka doll' sequence with alpha=0: seq(add(add(add(i,i=alpha..k),k=alpha..n),n=alpha..m),m=alpha..50). - Peter Luschny, Jul 14 2009
For n>=1, a(n) is the number of n-digit numbers the binary expansion of which contains two runs of 0's. - Vladimir Shevelev, Jul 30 2010
For n>0, a(n) is the number of crossing set partitions of {1,2,..,n} into n-2 blocks. - Peter Luschny, Apr 29 2011
The Kn3, Ca3 and Gi3 triangle sums of A139600 are related to the sequence given above, e.g., Gi3(n) = 2*A000332(n+3) - A000332(n+2) + 7*A000332(n+1). For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 29 2011
For n > 3, a(n) is the hyper-Wiener index of the path graph on n-2 vertices. - Emeric Deutsch, Feb 15 2012
Except for the four initial zeros, number of all possible tetrahedra of any size, having the same orientation as the original regular tetrahedron, formed when intersecting the latter by planes parallel to its sides and dividing its edges into n equal parts. - V.J. Pohjola, Aug 31 2012
a(n+3) is the number of different ways to color the faces (or the vertices) of a regular tetrahedron with n colors if we count mirror images as the same.
a(n) = fallfac(n,4)/4! is also the number of independent components of an antisymmetric tensor of rank 4 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Does not satisfy Benford's law [Ross, 2012] - N. J. A. Sloane, Feb 12 2017
Number of chiral pairs of colorings of the vertices (or faces) of a regular tetrahedron with n available colors. Chiral colorings come in pairs, each the reflection of the other. - Robert A. Russell, Jan 22 2020
From Mircea Dan Rus, Aug 26 2020: (Start)
a(n+3) is the number of lattice rectangles (squares included) in a staircase of order n; this is obtained by stacking n rows of consecutive unit lattice squares, aligned either to the left or to the right, which consist of 1, 2, 3, ..., n squares and which are stacked either in the increasing or in the decreasing order of their lengths. Below, there is a staircase or order 4 which contains a(7) = 35 rectangles. [See the Teofil Bogdan and Mircea Dan Rus link, problem 3, under A004320]
_
|_|_
|_|_|_
|_|_|_|_
|_|_|_|_|
(End)
a(n+4) is the number of strings of length n on an ordered alphabet of 5 letters where the characters in the word are in nondecreasing order. E.g., number of length-2 words is 15: aa,ab,ac,ad,ae,bb,bc,bd,be,cc,cd,ce,dd,de,ee. - Jim Nastos, Jan 18 2021
From Tom Copeland, Jun 07 2021: (Start)
Aside from the zeros, this is the fifth diagonal of the Pascal matrix A007318, the only nonvanishing diagonal (fifth) of the matrix representation IM = (A132440)^4/4! of the differential operator D^4/4!, when acting on the row vector of coefficients of an o.g.f., or power series.
M = e^{IM} is the matrix of coefficients of the Appell sequence p_n(x) = e^{D^4/4!} x^n = e^{b. D} x^n = (b. + x)^n = Sum_{k=0..n} binomial(n,k) b_n x^{n-k}, where the (b.)^n = b_n have the e.g.f. e^{b.t} = e^{t^4/4!}, which is that for A025036 aerated with triple zeros, the first column of M.
See A099174 and A000292 for analogous relationships for the third and fourth diagonals of the Pascal matrix. (End)
For integer m and positive integer r >= 3, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (3 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 70.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 294.
J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Charles W. Trigg, Mathematical Quickies, New York: Dover Publications, Inc., 1985, p. 53, #191.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 127.
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 0..1002
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
Gaston A. Brouwer, Jonathan Joe, Abby A. Noble, and Matt Noble, Problems on the Triangular Lattice, arXiv:2405.12321 [math.CO], 2024. Mentions this sequence.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
Paul Erdős, Norbert Kaufman, R. H. Koch, and Arthur Rosenthal, E750 (Interior diagonal points), Amer. Math. Monthly, 54 (Jun, 1947), p. 344.
Th. Grüner, A. Kerber, R. Laue, and M. Meringer, Mathematics for Combinatorial Chemistry.
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 4.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Iva Kodrnja and Helena Koncul, Polynomials vanishing on a basis of S_m(Gamma_0(N)), Glasnik Matematički (2024) Vol. 59, No. 79, 313-325. See p. 324.
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 13, 15.
Tim McDevitt and Kathryn Sutcliffe, A New Look at an Old Triangle Counting Problem. The Mathematics Teacher. Vol. 110, No. 6 (February 2017), pp. 470-474.
Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Les Reid, Counting Triangles in an Array. [Cached copy]
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.
Kirill S. Shardakov and Vladimir P. Bubnov, Stochastic Model of a High-Loaded Monitoring System of Data Transmission Network, Selected Papers of the Models and Methods of Information Systems Research Workshop, CEUR Workshop Proceedings, (St. Petersburg, Russia, 2019), 29-34.
Eric Weisstein's World of Mathematics, Composition.
Eric Weisstein's World of Mathematics, Pentatope Number.
Eric Weisstein's World of Mathematics, Pentatope.
A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
FORMULA
a(n) = n*(n-1)*(n-2)*(n-3)/24.
G.f.: x^4/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = n*a(n-1)/(n-4). - Benoit Cloitre, Apr 26 2003, R. J. Mathar, Jul 07 2009
a(n) = Sum_{k=1..n-3} Sum_{i=1..k} i*(i+1)/2. - Benoit Cloitre, Jun 15 2003
Convolution of natural numbers {1, 2, 3, 4, ...} and A000217, the triangular numbers {1, 3, 6, 10, ...}. - Jon Perry, Jun 25 2003
a(n) = A110555(n+1,4). - Reinhard Zumkeller, Jul 27 2005
a(n+1) = ((n^5-(n-1)^5) - (n^3-(n-1)^3))/24 - (n^5-(n-1)^5-1)/30; a(n) = A006322(n-2)-A006325(n-1). - Xavier Acloque, Oct 20 2003; R. J. Mathar, Jul 07 2009
a(4*n+2) = Pyr(n+4, 4*n+2) where the polygonal pyramidal numbers are defined for integers A>2 and B>=0 by Pyr(A, B) = B-th A-gonal pyramid number = ((A-2)*B^3 + 3*B^2 - (A-5)*B)/6; For all positive integers i and the pentagonal number function P(x) = x*(3*x-1)/2: a(3*i-2) = P(P(i)) and a(3*i-1) = P(P(i) + i); 1 + 24*a(n) = (n^2 + 3*n + 1)^2. - Jonathan Vos Post, Nov 15 2004
First differences of A000389(n). - Alexander Adamchuk, Dec 19 2004
For n > 3, the sum of the first n-2 tetrahedral numbers (A000292). - Martin Steven McCormick (mathseq(AT)wazer.net), Apr 06 2005 [Corrected by Doug Bell, Jun 25 2017]
Starting (1, 5, 15, 35, ...), = binomial transform of [1, 4, 6, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
Sum_{n>=4} 1/a(n) = 4/3, from the Taylor expansion of (1-x)^3*log(1-x) in the limit x->1. - R. J. Mathar, Jan 27 2009
A034263(n) = (n+1)*a(n+4) - Sum_{i=0..n+3} a(i). Also A132458(n) = a(n)^2 - a(n-1)^2 for n>0. - Bruno Berselli, Dec 29 2010
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1. - Harvey P. Dale, Aug 22 2011
a(n) = (binomial(n-1,2)^2 - binomial(n-1,2))/6. - Gary Detlefs, Nov 20 2011
a(n) = Sum_{k=1..n-2} Sum_{i=1..k} i*(n-k-2). - Wesley Ivan Hurt, Sep 25 2013
a(n) = (A000217(A000217(n-2) - 1))/3 = ((((n-2)^2 + (n-2))/2)^2 - (((n-2)^2 + (n-2))/2))/(2*3). - Raphie Frank, Jan 16 2014
Sum_{n>=0} a(n)/n! = e/24. Sum_{n>=3} a(n)/(n-3)! = 73*e/24. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
Sum_{n>=4} (-1)^(n+1)/a(n) = 32*log(2) - 64/3 = A242023 = 0.847376444589... . - Richard R. Forberg, Aug 11 2014
4/(Sum_{n>=m} 1/a(n)) = A027480(m-3), for m>=4. - Richard R. Forberg, Aug 12 2014
E.g.f.: x^4*exp(x)/24. - Robert Israel, Nov 23 2014
a(n+3) = C(n,1) + 3*C(n,2) + 3*C(n,3) + C(n,4). Each term indicates the number of ways to use n colors to color a tetrahedron with exactly 1, 2, 3, or 4 colors.
a(n) = A080852(1,n-4). - R. J. Mathar, Jul 28 2016
From Gary W. Adamson, Feb 06 2017: (Start)
G.f.: Starting (1, 5, 14, ...), x/(1-x)^5 can be written
as (x * r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1+x)^5;
as (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...) where r(x) = (1+x+x^2)^5;
as (x * r(x) * r(x^4) * r(x^16) * r(x^64) * ...) where r(x) = (1+x+x^2+x^3)^5;
... (as a conjectured infinite set). (End)
From Robert A. Russell, Jan 22 2020: (Start)
a(n) = A006008(n) - a(n+3) = (A006008(n) - A006003(n)) / 2 = a(n+3) - A006003(n).
a(n+3) = A006008(n) - a(n) = (A006008(n) + A006003(n)) / 2 = a(n) + A006003(n).
a(n) = A007318(n,4).
a(n+3) = A325000(3,n). (End)
Product_{n>=5} (1 - 1/a(n)) = cosh(sqrt(15)*Pi/2)/(100*Pi). - Amiram Eldar, Jan 21 2021
EXAMPLE
a(5) = 5 from the five independent components of an antisymmetric tensor A of rank 4 and dimension 5, namely A(1,2,3,4), A(1,2,3,5), A(1,2,4,5), A(1,3,4,5) and A(2,3,4,5). See the Dec 10 2015 comment. - Wolfdieter Lang, Dec 10 2015
MAPLE
A000332 := n->binomial(n, 4); [seq(binomial(n, 4), n=0..100)];
MATHEMATICA
Table[ Binomial[n, 4], {n, 0, 45} ] (* corrected by Harvey P. Dale, Aug 22 2011 *)
Table[(n-4)(n-3)(n-2)(n-1)/24, {n, 100}] (* Artur Jasinski, Dec 02 2007 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 1}, 45] (* Harvey P. Dale, Aug 22 2011 *)
CoefficientList[Series[x^4 / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
PROG
(PARI) a(n)=binomial(n, 4);
(Magma) [Binomial(n, 4): n in [0..50]]; // Vincenzo Librandi, Nov 23 2014
(GAP) A000332 := List([1..10^2], n -> Binomial(n, 4)); # Muniru A Asiru, Oct 16 2017
(Python)
# Starts at a(3), i.e. computes n*(n+1)*(n+2)*(n+3)/24
# which is more in line with A000217 and A000292.
def A000332():
x, y, z, u = 1, 1, 1, 1
yield 0
while True:
yield x
x, y, z, u = x + y + z + u + 1, y + z + u + 1, z + u + 1, u + 1
a = A000332(); print([next(a) for i in range(41)]) # Peter Luschny, Aug 03 2019
(Python)
print([n*(n-1)*(n-2)*(n-3)//24 for n in range(50)])
# Gennady Eremin, Feb 06 2022
CROSSREFS
binomial(n, k): A161680 (k = 2), A000389 (k = 5), A000579 (k = 6), A000580 (k = 7), A000581 (k = 8), A000582 (k = 9).
Cf. A000217, A000292, A007318 (column k = 4).
Cf. A158824.
Cf. A006008 (Number of ways to color the faces (or vertices) of a regular tetrahedron with n colors when mirror images are counted as two).
Cf. A104712 (third column, k=4).
See A269747 for a 3-D analog.
Cf. A006008 (oriented), A006003 (achiral) tetrahedron colorings.
Row 3 of A325000, col. 4 of A007318.
KEYWORD
nonn,easy,nice,changed
EXTENSIONS
Some formulas that referred to another offset corrected by R. J. Mathar, Jul 07 2009
STATUS
approved
a(n) = 3*n.
+10
298
0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177
OFFSET
0,2
COMMENTS
If n != 1 and n^2+2 is prime then n is a member of this sequence. - Cino Hilliard, Mar 19 2007
Multiples of 3. Positive members of this sequence are the third transversal numbers (or 3-transversal numbers): Numbers of the 3rd column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 3rd column in the square array A057145. - Omar E. Pol, May 02 2008
Numbers n for which polynomial 27*x^6-2^n is factorizable. - Artur Jasinski, Nov 01 2008
1/7 in base-2 notation = 0.001001001... = 1/2^3 + 1/2^6 + 1/2^9 + ... - Gary W. Adamson, Jan 24 2009
A165330(a(n)) = 153 for n > 0; subsequence of A031179. - Reinhard Zumkeller, Sep 17 2009
A011655(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
A215879(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2012
Moser conjectured, and Newman proved, that the terms of this sequence are more likely to have an even number of 1s in binary than an odd number. The excess is an undulating multiple of n^(log 3/log 4). See also Coquet, who refines this result. - Charles R Greathouse IV, Jul 17 2013
Integer areas of medial triangles of integer-sided triangles.
Also integer subset of A188158(n)/4.
A medial triangle MNO is formed by joining the midpoints of the sides of a triangle ABC. The area of a medial triangle is A/4 where A is the area of the initial triangle ABC. - Michel Lagneau, Oct 28 2013
From Derek Orr, Nov 22 2014: (Start)
Let b(0) = 0, and b(n) = the number of distinct terms in the set of pairwise sums {b(0), ... b(n-1)} + {b(0), ... b(n-1)}. Then b(n+1) = a(n), for n > 0.
Example: b(1) = the number of distinct sums of {0} + {0}. The only possible sum is {0} so b(1) = 1. b(2) = the number of distinct sums of {0,1} + {0,1}. The possible sums are {0,1,2} so b(2) = 3. b(3) = the number of distinct sums of {0,1,3} + {0,1,3}. The possible sums are {0, 1, 2, 3, 4, 6} so b(3) = 6. This continues and one can see that b(n+1) = a(n).
(End)
Number of partitions of 6n into exactly 2 parts. - Colin Barker, Mar 23 2015
Partial sums are in A045943. - Guenther Schrack, May 18 2017
Number of edges in a maximal planar graph with n+2 vertices, n > 0 (see A008486 comments). - Jonathan Sondow, Mar 03 2018
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
LINKS
J. Coquet, A summation formula related to the binary digits, Inventiones Mathematicae 73 (1983), pp. 107-115.
Charles Cratty, Samuel Erickson, Frehiwet Negass, and Lara Pudwell, Pattern Avoidance in Double Lists, preprint, 2015.
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
Tanya Khovanova, Recursive Sequences
D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
G.f.: 3*x/(1-x)^2. - R. J. Mathar, Oct 23 2008
a(n) = A008486(n), n > 0. - R. J. Mathar, Oct 28 2008
G.f.: A(x) - 1, where A(x) is the g.f. of A008486. - Gennady Eremin, Feb 20 2021
a(n) = Sum_{k=0..inf} A030308(n,k)*A007283(k). - Philippe Deléham, Oct 17 2011
E.g.f.: 3*x*exp(x). - Ilya Gutkovskiy, May 18 2016
From Guenther Schrack, May 18 2017: (Start)
a(3*k) = a(a(k)) = A008591(n).
a(3*k+1) = a(a(k) + 1) = a(A016777(n)) = A017197(n).
a(3*k+2) = a(a(k) + 2) = a(A016789(n)) = A017233(n). (End)
EXAMPLE
G.f.: 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + ...
MATHEMATICA
Range[0, 500, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
PROG
(Magma) [3*n: n in [0..60]]; // Vincenzo Librandi, Jul 23 2011
(Maxima) makelist(3*n, n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(Haskell)
a008585 = (* 3)
a008585_list = iterate (+ 3) 0 -- Reinhard Zumkeller, Feb 19 2013
(PARI) a(n)=3*n \\ Charles R Greathouse IV, Jun 28 2013
CROSSREFS
Row / column 3 of A004247 and of A325820.
Cf. A016957, A057145, A139600, A139606, A001651 (complement), A032031 (partial products), A190944 (binary), A061819 (base 4).
KEYWORD
nonn,easy
EXTENSIONS
Partially edited by Joerg Arndt, Mar 11 2010
STATUS
approved
Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.
(Formerly M4116 N1709)
+10
144
0, 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726, 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610, 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206, 11368, 12615, 13950, 15376, 16896, 18513, 20230, 22050, 23976, 26011, 28158, 30420, 32800, 35301, 37926, 40678
OFFSET
0,3
COMMENTS
a(n) = n^2(n+1)/2 is half the number of colorings of three points on a line with n+1 colors. - R. H. Hardin, Feb 23 2002
Sum of n smallest multiples of n. - Amarnath Murthy, Sep 20 2002
a(n) = number of (n+6)-bit binary sequences with exactly 7 1's none of which is isolated. A 1 is isolated if its immediate neighbor(s) are 0. - David Callan, Jul 15 2004
Also as a(n) = (1/6)*(3*n^3+3*n^2), n > 0: structured trigonal prism numbers (cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
If Y is a 3-subset of an n-set X then, for n >= 5, a(n-4) is the number of 5-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n-1), n >= 2, is the number of ways to have n identical objects in m=2 of altogether n distinguishable boxes (n-2 boxes stay empty). - Wolfdieter Lang, Nov 13 2007
a(n+1) is the convolution of (n+1) and (3n+1). - Paul Barry, Sep 18 2008
The number of 3-character strings from an alphabet of n symbols, if a string and its reversal are considered to be the same.
Partial sums give A001296. - Jonathan Vos Post, Mar 26 2011
a(n-1):=N_1(n), n >= 1, is the number of edges of n planes in generic position in three-dimensional space. See a comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p.506. - Wolfdieter Lang, May 27 2011
Partial sums of pentagonal numbers A000326. - Reinhard Zumkeller, Jul 07 2012
From Ant King, Oct 23 2012: (Start)
For n > 0, the digital roots of this sequence A010888(A002411(n)) form the purely periodic 9-cycle {1,6,9,4,3,9,7,9,9}.
For n > 0, the units' digits of this sequence A010879(A002411(n)) form the purely periodic 20-cycle {1,6,8,0,5,6,6,8,5,0,6,6,3,0,0,6,1,8,0,0}.
(End)
a(n) is the number of inequivalent ways to color a path graph having 3 nodes using at most n colors. Note, here there is no restriction on the color of adjacent nodes as in the above comment by R. H. Hardin (Feb 23 2002). Also, here the structures are counted up to graph isomorphism, where as in the above comment the "three points on a line" are considered to be embedded in the plane. - Geoffrey Critzer, Mar 20 2013
After 0, row sums of the triangle in A101468. - Bruno Berselli, Feb 10 2014
Latin Square Towers: Take a Latin square of order n, with symbols from 1 to n, and replace each symbol x with a tower of height x. Then the total number of unit cubes used is a(n). - Arun Giridhar, Mar 29 2015
This is the case k = n+4 of b(n,k) = n*((k-2)*n-(k-4))/2, which is the n-th k-gonal number. Therefore, this is the 3rd upper diagonal of the array in A139600. - Luciano Ancora, Apr 11 2015
For n > 0, a(n) is the number of compositions of n+7 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Also the Wiener index of the n-antiprism graph. - Eric W. Weisstein, Sep 07 2017
For n > 0, a(2n+1) is the number of non-isomorphic 5C_m-snakes, where m = 2n+1 or m = 2n (for n >= 2). A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path. - Christian Barrientos, May 15 2019
For n >= 1, a(n-1) is the number of 0°- and 45°-tilted squares that can be drawn by joining points in an n X n lattice. - Paolo Xausa, Apr 13 2021
a(n) is the number of all possible products of n rolls of a six-sided die. This can be easily seen by the recursive formula a(n) = a(n - 1) + 2 * binomial(n, 2) + binomial(n + 1, 2). - Rafal Walczak, Jun 15 2024
REFERENCES
V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_1.
Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., Vol. 60 (2001), pp. 85-96.
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/5).
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see Vol. 2, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Somaya Barati, Beáta Bényi, Abbas Jafarzadeh and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
Phyllis Chinn and Silvia Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seq., Vol. 6 (2003), Article 03.2.3.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 17.
Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, Vol 19 (2016), Article 16.7.3.
C. Krishnamachaki, The operator (xD)^n, J. Indian Math. Soc., Vol. 15 (1923), pp. 3-4. [Annotated scanned copy]
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number.
Eric Weisstein's World of Mathematics, Wiener Index.
FORMULA
Average of n^2 and n^3.
G.f.: x*(1+2*x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(n) = n*Sum_{k=0..n} (n-k) = n*Sum_{k=0..n} k. - Paul Barry, Jul 21 2003
a(n) = n*A000217(n). - Xavier Acloque, Oct 27 2003
a(n) = (1/2)*Sum_{j=1..n} Sum_{i=1..n} (i+j) = (1/2)*(n^2+n^3) = (1/2)*A011379(n). - Alexander Adamchuk, Apr 13 2006
Row sums of triangle A127739, triangle A132118; and binomial transform of [1, 5, 7, 3, 0, 0, 0, ...] = (1, 6, 18, 40, 75, ...). - Gary W. Adamson, Aug 10 2007
G.f.: x*F(2,3;1;x). - Paul Barry, Sep 18 2008
Sum_{j>=1} 1/a(j) = hypergeom([1, 1, 1], [2, 3], 1) = -2 + 2*zeta(2) = A195055 - 2. - Stephen Crowley, Jun 28 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Oct 20 2011
From Ant King, Oct 23 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 3.
a(n) = (n+1)*(2*A000326(n)+n)/6 = A000292(n) + 2*A000292(n-1).
a(n) = A000330(n)+A000292(n-1) = A000217(n) + 3*A000292(n-1).
a(n) = binomial(n+2,3) + 2*binomial(n+1,3).
(End)
a(n) = (A000330(n) + A002412(n))/2 = (A000292(n) + A002413(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = (24/(n+3)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+3). - Vladimir Kruchinin, Jun 04 2013
Sum_{n>=1} a(n)/n! = (7/2)*exp(1). - Richard R. Forberg, Jul 15 2013
E.g.f.: x*(2 + 4*x + x^2)*exp(x)/2. - Ilya Gutkovskiy, May 31 2016
From R. J. Mathar, Jul 28 2016: (Start)
a(n) = A057145(n+4,n).
a(n) = A080851(3,n-1). (End)
For n >= 1, a(n) = (Sum_{i=1..n} i^2) + Sum_{i=0..n-1} i^2*((i+n) mod 2). - Paolo Xausa, Apr 13 2021
a(n) = Sum_{k=1..n} GCD(k,n) * LCM(k,n). - Vaclav Kotesovec, May 22 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 + Pi^2/6 - 4*log(2). - Amiram Eldar, Jan 03 2022
EXAMPLE
a(3)=18 because 4 identical balls can be put into m=2 of n=4 distinguishable boxes in binomial(4,2)*(2!/(1!*1!) + 2!/2!) = 6*(2+1) = 18 ways. The m=2 part partitions of 4, namely (1,3) and (2,2), specify the filling of each of the 6 possible two-box choices. - Wolfdieter Lang, Nov 13 2007
MAPLE
seq(n^2*(n+1)/2, n=0..40);
MATHEMATICA
Table[n^2 (n + 1)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 18}, 50] (* Harvey P. Dale, Oct 20 2011 *)
Nest[Accumulate, Range[1, 140, 3], 2]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
CoefficientList[Series[x (1 + 2 x) / (1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jan 08 2016 *)
PROG
(PARI) a(n)=n^2*(n+1)/2
(Haskell)
a002411 n = n * a000217 n -- Reinhard Zumkeller, Jul 07 2012
(Magma) [n^2*(n+1)/2: n in [0..40]]; // Wesley Ivan Hurt, May 25 2014
(PARI) concat(0, Vec(x*(1+2*x)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 07 2016
(GAP) List([0..45], n->n^2*(n+1)/2); # Muniru A Asiru, Feb 19 2018
CROSSREFS
A006002(n) = -a(-1-n).
a(n) = A093560(n+2, 3), (3, 1)-Pascal column.
A row or column of A132191.
Second column of triangle A103371.
Cf. similar sequences listed in A237616.
KEYWORD
nonn,easy,nice
STATUS
approved
Square array of polygonal numbers T(n,k) = ((n-2)*k^2 - (n-4)*k)/2, n >= 2, k >= 1, read by antidiagonals upwards.
+10
83
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 10, 5, 1, 6, 12, 16, 15, 6, 1, 7, 15, 22, 25, 21, 7, 1, 8, 18, 28, 35, 36, 28, 8, 1, 9, 21, 34, 45, 51, 49, 36, 9, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11, 1, 12, 30, 52, 75, 96, 112
OFFSET
2,3
COMMENTS
The set of the "nontrivial" entries T(n>=3,k>=3) is in A090466. - R. J. Mathar, Jul 28 2016
T(n,k) is the smallest number that can be expressed as the sum of k consecutive positive integers that differ by n - 2. In other words: T(n,k) is the sum of k terms of the arithmetic progression with common difference n - 2 and 1st term 1, (see the example). - Omar E. Pol, Apr 29 2020
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 189, 1966.
J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag (Copernicus), p. 38, 1996.
LINKS
FORMULA
T(2n+4,n) = n^3. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Aug 28 2000
T(n, k) = T(n-1, k) + k*(k-1)/2 [with T(2, k)=k] = T(n, k-1) + 1 + (n-2)*(k-1) [with T(n, 0)=0] = k + (n-2)k(k-1)/2 = k + A063212(n-2, k-1). - Henry Bottomley, Jul 11 2001
G.f. for row n: x*(1+(n-3)*x)/(1-x)^3, n>=2. - Paul Barry, Feb 21 2003
From Wolfdieter Lang, Nov 05 2014: (Start)
The triangle is a(n, m) = T(n-m+1, m) = (1/2)*m*(n*(m-1) + 3 - m^2) for n >= 2, m = 1, 2, ..., n-1 and zero elsewhere.
O.g.f. for column m (without leading zeros): (x*binomial(m,2) + (1+2*m-m^2)*(m/2)*(1-x))/(x^(m-1)*(1-x)^2). (End)
T(n,k) = A139600(n-2,k) = A086270(n-2,k). - R. J. Mathar, Jul 28 2016
Row sums of A077028: T(n+2,k+1) = Sum_{j=0..k} A077028(n,j), where A077028(n,k) = 1+n*k is the square array interpretation of A077028 (the 1D polygonal numbers). - R. J. Mathar, Jul 30 2016
G.f.: x^2*y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Apr 12 2024
EXAMPLE
Array T(n k) (n >= 2, k >= 1) begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, ...
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ...
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, ...
1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, ...
1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, ...
1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, ...
1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, ...
1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, ...
1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, ...
1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, ...
1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, ...
1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, ...
-------------------------------------------------------
From Wolfdieter Lang, Nov 04 2014: (Start)
The triangle a(k, m) begins:
k\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
2: 1
3: 1 2
4: 1 3 3
5: 1 4 6 4
6: 1 5 9 10 5
7: 1 6 12 16 15 6
8: 1 7 15 22 25 21 7
9: 1 8 18 28 35 36 28 8
10: 1 9 21 34 45 51 49 36 9
11: 1 10 24 40 55 66 70 64 45 10
12: 1 11 27 46 65 81 91 92 81 55 11
13: 1 12 30 52 75 96 112 120 117 100 66 12
14: 1 13 33 58 85 111 133 148 153 145 121 78 13
15: 1 14 36 64 95 126 154 176 189 190 176 144 91 14
...
-------------------------------------------------------
a(2,1) = T(2,1), a(6, 3) = T(4, 3). (End)
.
From Omar E. Pol, May 03 2020: (Start)
Illustration of the corner of the square array:
.
1 2 3 4
O O O O O O O O O O
.
1 3 6 10
O O O O O O O O O O
O O O O O O
O O O
O
.
1 4 9 16
O O O O O O O O O O
O O O O O O
O O O O O O
O O O
O O O
O
O
.
1 5 12 22
O O O O O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O
O O O
O O O
O
O
O
(End)
MAPLE
A057145 := proc(n, k)
((n-2)*k^2-(n-4)*k)/2 ;
end proc:
seq(seq(A057145(d-k, k), k=1..d-2), d=3..12); # R. J. Mathar, Jul 28 2016
MATHEMATICA
nn = 12; Flatten[Table[k (3 - k^2 - n + k*n)/2, {n, 2, nn}, {k, n - 1}]] (* T. D. Noe, Oct 10 2012 *)
PROG
(Magma) /* As square array: */ t:=func<n, s | (n^2*(s-2)-n*(s-4))/2>; [[t(s, n): s in [1..11]]: n in [2..14]]; // Bruno Berselli, Jun 24 2013
CROSSREFS
Many rows and columns of this array are in the database.
Cf. A055795 (antidiagonal sums), A064808 (main diagonal).
KEYWORD
nonn,nice,tabl,easy
AUTHOR
N. J. A. Sloane, Sep 12 2000
EXTENSIONS
a(50)=49 corrected to a(50)=40 by Jean-François Alcover, Jul 22 2011
Edited: Name shortened, offset in Paul Barry's g.f. corrected and Conway-Guy reference added. - Wolfdieter Lang, Nov 04 2014
STATUS
approved
a(n) = 10*n + 5.
+10
62
5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175, 185, 195, 205, 215, 225, 235, 245, 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405, 415, 425, 435, 445, 455, 465, 475, 485, 495, 505, 515, 525, 535
OFFSET
0,1
COMMENTS
Continued fraction expansion of tanh(1/5). - Benoit Cloitre, Dec 17 2002
n such that 5 divides the numerator of B(2n) where B(2n) = the 2n-th Bernoulli number. - Benoit Cloitre, Jan 01 2004
5 times odd numbers. - Omar E. Pol, May 02 2008
5th transversal numbers (or 5-transversal numbers): Numbers of the 5th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 5th column in the square array A057145. - Omar E. Pol, May 02 2008
Successive sums: 5, 20, 45, 80, 125, ... (see A033429). - Philippe Deléham, Dec 08 2011
3^a(n) + 1 is divisible by 61. - Vincenzo Librandi, Feb 05 2013
If the initial 5 is changed to 1, giving 1,15,25,35,45,..., these are values of m such that A323288(m)/m reaches a new record high value. - N. J. A. Sloane, Jan 23 2019
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012
FORMULA
a(n) = A005408(n)*5. - Omar E. Pol, Oct 19 2008
a(n) = 20*n - a(n-1) (with a(0)=5). - Vincenzo Librandi, Nov 19 2010
G.f.: 5*(x+1)/(x-1)^2. - Colin Barker, Nov 14 2012
a(n) = A057145(n+2,5). - R. J. Mathar, Jul 28 2016
E.g.f.: 5*exp(x)*(1 + 2*x). - Stefano Spezia, Feb 14 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/20. - Amiram Eldar, Dec 12 2021
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(5-sqrt(5))/2 = sqrt(2)*sin(Pi/5) = A182007/A002193.
Product_{n>=0} (1 + (-1)^n/a(n)) = phi/sqrt(2) (A094884). (End)
MATHEMATICA
Range[5, 1000, 10] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2, -1}, {5, 15}, 60] (* Harvey P. Dale, Nov 16 2019 *)
PROG
(Magma) [10*n + 5: n in [0..60]]; // Vincenzo Librandi, Feb 05 2013
(Haskell)
a017329 = (+ 5) . (* 10)
a017329_list = [5, 15 ..] -- Reinhard Zumkeller, Apr 10 2015
(PARI) a(n)=10*n+5 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(n) = 6*n + 4.
+10
57
4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 322, 328
OFFSET
0,1
COMMENTS
Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1) + 2*m*(n-1) - 2 for m > 1 and n > 1. - Sergey Kitaev, Nov 12 2004
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
4th transversal numbers (or 4-transversal numbers): Numbers of the 4th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 4th column in the square array A057145. - Omar E. Pol, May 02 2008
a(n) is the maximum number such that there exists an edge coloring of the complete graph with a(n) vertices using n colors and every subgraph whose edges are of the same color (subgraph induced by edge color) is planar. - Srikanth K S, Dec 18 2010
Also numbers having two antecedents in the Collatz problem: 12*n+8 and 2*n+1 (respectively A017617(n) and A005408(n)). - Michel Lagneau, Dec 28 2012
a(n) = 6n+4 has three undirected edges e1 = (3n+2, 6n+4), e2 = (6n+4, 12n+8) and e3 = (2n+1, 6n+4) in the Collatz graph of A006370. - Heinz Ebert, Mar 16 2021
Conjecture: this sequence contains some but not all, even numbers with odd abundance A088827. They appear in this sequence at indices A186424(n) - 1. - John Tyler Rascoe, Jul 09 2022
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012
LINKS
Heinz Ebert, A Graph Theoretical Approach to the Collatz Problem, arXiv:1905.07575 [math.GM], 2019-2020.
Tanya Khovanova, Recursive Sequences.
Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 4 (2004), Article A21, 20pp.
FORMULA
A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A016789(n)*2. - Omar E. Pol, May 02 2008
A157176(a(n)) = A067412(n+1). - Reinhard Zumkeller, Feb 24 2009
a(n) = sqrt(A016958(n)). - Zerinvary Lajos, Jun 30 2009
a(n) = 2*(6*n+1) - a(n-1) (with a(0)=4). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((sqrt(36*n^2 - 36*n + 1) + 6*n + 1)/2). - Srikanth K S, Dec 18 2010
From Colin Barker, Jan 30 2012: (Start)
G.f.: 2*(2+x)/(1-2*x+x^2).
a(n) = 2*a(n-1) - a(n-2). (End)
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
a(n) = 3 * A005408(n) + 1. - Fred Daniel Kline, Oct 24 2015
a(n) = A057145(n+2,4). - R. J. Mathar, Jul 28 2016
a(4*n+2) = 4 * a(n). - Zhandos Mambetaliyev, Sep 22 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 - log(2)/6. - Amiram Eldar, Dec 10 2021
E.g.f.: 2*exp(x)*(2 + 3*x). - Stefano Spezia, May 29 2024
MAPLE
seq(6*n+4, n = 0 .. 50) # Matt C. Anderson, Jun 09 2017
MATHEMATICA
Range[4, 1000, 6] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *)
PROG
(Maxima) makelist(6*n+4, n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(Haskell)
a016957 = (+ 4) . (* 6) -- Reinhard Zumkeller, Jul 05 2013
(PARI) a(n)=6*n+4 \\ Charles R Greathouse IV, Jul 10 2016
KEYWORD
nonn,easy
STATUS
approved
Period 4: repeat [0, 0, 1, 1].
+10
33
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
OFFSET
0,1
COMMENTS
Decimal expansion of 1/909.
Lexicographically earliest de Bruijn sequence for n = 2 and k = 2.
Except for first term, binary expansion of the decimal number 1/10 = 0.000110011001100110011... in base 2. - Benoit Cloitre, May 18 2002
Content of #2 binary placeholder when n is converted from decimal to binary. a(n) = n*(n-1)/2 mod 2. Example: a(7) = 1 since 7 in binary is 1 -1- 1 and (7*6/2) mod 2 = 1. - Anne M. Donovan (anned3005(AT)aol.com), Sep 15 2003
Expansion in any base b of 1/((b-1)*(b^2+1)) = 1/(b^3-b^2+b-1). E.g., 1/5 in base 2, 1/20 in base 3, 1/51 in base 4, etc. - Franklin T. Adams-Watters, Nov 07 2006
Except for first term, parity of the triangular numbers A000217. - Omar E. Pol, Jan 17 2012
Except for first term, more generally: 1) Parity of the k-polygonal numbers, if k is odd (Cf. A139600, A139601). 2) Parity of the generalized k-gonal numbers, for even k >= 6. - Omar E. Pol, Feb 05 2012
Except for first term, parity of Recamán's sequence A005132. - Omar E. Pol, Apr 13 2012
Inverse binomial transform of A000749(n+1). - Wesley Ivan Hurt, Dec 30 2015
Least significant bit of tribonacci numbers (A000073). - Andres Cicuttin, Apr 04 2016
FORMULA
From Paul Barry, Aug 30 2004: (Start)
G.f.: x^2*(1 + x)/(1 - x^4).
a(n) = 1/2 - cos(Pi*n/2)/2 - sin(Pi*n/2)/2.
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 2. (End)
a(n+2) = Sum_{k=0..n} b(k), with b(k) = A056594(k) (partial sums of S(n,x) Chebyshev polynomials at x=0).
a(n) = -a(n-2) + 1, for n >= 2 with a(0) = a(1) = 0.
G.f.: x^2/((1 - x)*(1 + x^2)) = x^2/(1 - x + x^2 - x^3).
From Jaume Oliver Lafont, Dec 05 2008: (Start)
a(n) = 1/2 - sin((2n+1)*Pi/4)/sqrt(2).
a(n) = 1/2 - cos((2n-1)*Pi/4)/sqrt(2). (End)
a(n) = floor((n mod 4)/2). - Reinhard Zumkeller, Apr 15 2011
Euler transform of length 4 sequence [1, -1, 0, 1]. - Michael Somos, Feb 28 2014
a(1-n) = a(n) for all n in Z. - Michael Somos, Feb 28 2014
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = a(n-4) for n > 3.
a(n) = A133872(n+2).
a(n) + a(n+1) = A007877(n). (End)
E.g.f.: (exp(x) - sin(x) - cos(x))/2. - Ilya Gutkovskiy, Jul 11 2016
a(n) = (1 - (-1)^(n*(n-1)/2))/2. - Guenther Schrack, Feb 28 2019
EXAMPLE
G.f. = x^2 + x^3 + x^6 + x^7 + x^10 + x^11 + x^14 + x^15 + x^18 + x^19 + ...;
1/909 = 0.001100110011001 ...
MAPLE
A021913:=n->floor((n mod 4)/2); seq(A021913(n), n=0..100); # Wesley Ivan Hurt, Feb 28 2014
MATHEMATICA
Table[Floor[Mod[n, 4]/2], {n, 0, 100}] (* Wesley Ivan Hurt, Feb 28 2014 *)
a[ n_] := Mod[ Quotient[ n, 2], 2]; (* Michael Somos, Feb 28 2014 *)
LinearRecurrence[{1, -1, 1}, {0, 0, 1}, 100] (* Ray Chandler, Aug 25 2015 *)
CoefficientList[Series[x^2(1+x)/(1-x^4), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 31 2015 *)
(1-(-1)^Binomial[Range[0, 100], 2])/2 (* G. C. Greubel, Apr 03 2019 *)
PROG
(PARI) {a(n) = n \ 2 % 2}; /* Michael Somos, Feb 28 2014 */
(PARI) x='x+O('x^99); concat([0, 0], Vec(x^2/(1-x+x^2-x^3))) \\ Altug Alkan, Apr 04 2016
(Magma) &cat [[0, 0, 1, 1]^^30]; // Vincenzo Librandi, Dec 31 2015
KEYWORD
nonn,cons,easy
EXTENSIONS
Chebyshev comment from Wolfdieter Lang, Sep 10 2004
STATUS
approved
a(n) = n*(n + 1)*(n^2 - 3*n + 5)/6.
(Formerly M2839)
+10
20
0, 1, 3, 10, 30, 75, 161, 308, 540, 885, 1375, 2046, 2938, 4095, 5565, 7400, 9656, 12393, 15675, 19570, 24150, 29491, 35673, 42780, 50900, 60125, 70551, 82278, 95410, 110055, 126325, 144336, 164208, 186065, 210035, 236250, 264846, 295963, 329745, 366340
OFFSET
0,3
COMMENTS
Structured meta-pyramidal numbers, the n-th number from an n-gonal pyramidal number sequence. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The Gi4 triangle sums of A139600 are given by the terms of this sequence. For the definitions of the Gi4 and other triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. S. Kluk and N. J. A. Sloane, Correspondence, 1979.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = (1/6)*(n^4 - 2*n^3 + 2*n^2 + 5*n). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 5*binomial(n+1,4). - Johannes W. Meijer, Apr 29 2011
MAPLE
A006484:=-(1-2*z+5*z**2)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
lst={}; Do[AppendTo[lst, n*(n+1)*(n^2-3*n+5)/6], {n, 0, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *)
Table[n(n+1) (n^2-3n+5)/6, {n, 0, 40}] (* Harvey P. Dale, May 29 2019 *)
PROG
(Magma) [n*(n+1)*(n^2 - 3*n + 5)/6: n in [0..50]]; // Vincenzo Librandi, May 16 2011
(PARI) a(n)=n*(n+1)*(n^2-3*n+5)/6 \\ Charles R Greathouse IV, Oct 18 2022
CROSSREFS
Cf. other meta sequences: A100177: prism; A000447: "polar" diamond; A059722: "equatorial diamond"; A100185: anti-prism; A100188: "polar" anti-diamond; and A100189: "equatorial" anti-diamond. Cf. A100145 for more on structured numbers.
Cf. A000332.
KEYWORD
nonn,easy
AUTHOR
Dennis S. Kluk (mathemagician(AT)ameritech.net)
STATUS
approved
4-dimensional analog of centered polygonal numbers. Also number of regions created by sides and diagonals of a convex n-gon in general position.
(Formerly M3413)
+10
20
1, 0, 0, 1, 4, 11, 25, 50, 91, 154, 246, 375, 550, 781, 1079, 1456, 1925, 2500, 3196, 4029, 5016, 6175, 7525, 9086, 10879, 12926, 15250, 17875, 20826, 24129, 27811, 31900, 36425, 41416, 46904, 52921, 59500, 66675, 74481, 82954, 92131
OFFSET
0,5
COMMENTS
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n)=coeff(charpoly(A,x),x^(n-4)). - Milan Janjic, Jan 24 2010
From Ant King, Sep 14 2011: (Start)
Consider the array formed by the polygonal numbers of increasing rank A139600
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ... A000217(n)
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290(n)
0, 1, 5, 12, 22, 35, 51, 70, 92, 117, ... A000326(n)
0, 1, 6, 15, 28, 45, 66, 91, 120, 153, ... A000384(n)
0, 1, 7, 18, 34, 55, 81, 112, 148, 189, ... A000566(n)
0, 1, 8, 21, 40, 65, 96, 133, 176, 225, ... A000567(n)
...
Then, for n>=2, a(n) is the diagonal sum of this polygonal grid.
(End)
Binomial transform of (1, -1, 1, 0, 1, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 102.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. W. Freeman, The number of regions determined by a convex polygon, Math. Mag., 49 (1976), 23-25.
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Eric Weisstein's World of Mathematics, Polygon Diagonal.
FORMULA
a(n) = binomial(n,4) + binomial(n-1,2) = A000332(n) + A000217(n-2).
a(n) = binomial(n-1,2) + binomial(n-1,3) + binomial(n-1,4). - Zerinvary Lajos, Jul 23 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=1, a(1)=0, a(2)=0, a(3)=1, a(4)=4. - Harvey P. Dale, Jul 11 2011
G.f.: -((x-1)*x*(x*(4*x-5)+5)+1)/(x-1)^5. - Harvey P. Dale, Jul 11 2011
a(n) = (n^4 - 6*n^3 + 23*n^2 - 42*n + 24)/24. - T. D. Noe, Oct 16 2013
For odd n, a(n) = A007678(n). - R. J. Mathar, Nov 22 2017
a(n) = a(3-n) for all n in Z. - Michael Somos, Nov 23 2021
Sum_{n>=3} 1/a(n) = 66/25 - (4/5)*sqrt(3/13)*Pi*tanh(sqrt(39)*Pi/2). - Amiram Eldar, Aug 23 2022
EXAMPLE
For a pentagon in general position, 11 regions are formed (Comtet, Fig. 20, p. 74).
MAPLE
A006522 := n->(1/24)*(n-1)*(n-2)*(n^2-3*n+12):
seq(A006522(n), n=0..40);
A006522:=-(1-z+z**2)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence except for three leading terms
MATHEMATICA
a=2; b=3; s=4; lst={1, 0, 0, 1, s}; Do[a+=n; b+=a; s+=b; AppendTo[lst, s], {n, 2, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[Binomial[n, 4]+Binomial[n-1, 2], {n, 0, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 0, 0, 1, 4}, 40] (* Harvey P. Dale, Jul 11 2011 *)
CoefficientList[Series[-(((x - 1) x (x (4 x - 5) + 5) + 1) / (x - 1)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
a[n_] := If[n==0, 1, Sum[PolygonalNumber[n-k+1, k], {k, 0, n-2}]];
a /@ Range[0, 40] (* Jean-François Alcover, Jan 21 2020 *)
PROG
(Magma) [Binomial(n, 4)+Binomial(n-1, 2): n in [0..40]]; // Vincenzo Librandi, Jun 09 2013
(PARI) a(n)=1/24*n^4 - 1/4*n^3 + 23/24*n^2 - 7/4*n + 1 \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Partial sums of A004006.
KEYWORD
nonn,easy,nice
STATUS
approved
a(n) = binomial(n,4) + binomial(n,2).
+10
17
0, 1, 3, 7, 15, 30, 56, 98, 162, 255, 385, 561, 793, 1092, 1470, 1940, 2516, 3213, 4047, 5035, 6195, 7546, 9108, 10902, 12950, 15275, 17901, 20853, 24157, 27840, 31930, 36456, 41448, 46937, 52955, 59535, 66711, 74518, 82992, 92170, 102090, 112791, 124313, 136697
OFFSET
1,3
COMMENTS
Answer to the question: if you have a tall building and 4 plates and you need to find the highest story from which a plate thrown does not break, what is the number of stories you can handle given n tries?
If Y is a 2-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Antidiagonal sums of A139600. - Johannes W. Meijer, Apr 29 2011
Also the number of maximal cliques in the n-tetrahedral graph for n > 5. - Eric W. Weisstein, Jun 12 2017
Mark each point on an 8^(n-2) grid with the number of points that are visible from the point; for n > 3, a(n) is the number of distinct values in the grid. - Torlach Rush, Mar 25 2021
Antidiagonal sums of both A057145 and also A134394 yield this sequence without the initial term 0. - Michael Somos, Nov 23 2021
LINKS
Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372.
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7
Eric Weisstein's World of Mathematics, Johnson Graph
Eric Weisstein's World of Mathematics, Maximal Clique
Eric Weisstein's World of Mathematics, Tetrahedral Graph
FORMULA
a(n) = A000127(n)-1. Differences give A000127.
a(1) = 1; a(n) = a(n-1) + 1 + A004006(n-1).
a(n+1) = C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4). - James A. Sellers, Mar 16 2002
Row sums of triangle A134394. Also, binomial transform of [1, 2, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Oct 23 2007
O.g.f.: -x^2(1-2x+2x^2)/(x-1)^5. a(n) = A000332(n) + A000217(n-1). - R. J. Mathar, Apr 13 2008
a(n) = n*(n^3 - 6*n^2 + 23*n - 18)/24. - Gary Detlefs, Dec 08 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=0, a(2)=1, a(3)=3, a(4)=7, a(5)=15. - Harvey P. Dale, Dec 07 2015
MAPLE
A055795:=n->binomial(n, 4)+binomial(n, 2); # Zerinvary Lajos, Jul 24 2006
MATHEMATICA
Table[Binomial[n, 4] + Binomial[n, 2], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[n (n^3 - 6 n^2 + 23 n - 18)/24, {n, 100}] (* Wesley Ivan Hurt, Sep 29 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 3, 7, 15}, 50] (* Harvey P. Dale, Dec 07 2015 *)
Total[Binomial[Range[20], #] & /@ {2, 4}] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x (-1 + 2 x - 2 x^2)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017~ *)
PROG
(Magma) [n*(n^3-6*n^2+23*n-18)/24: n in [1..100]]; // Wesley Ivan Hurt, Sep 29 2013
(Maxima) A055795(n):=n*(n^3-6*n^2+23*n-18)/24$ makelist(A055795(n), n, 1, 100); /* Wesley Ivan Hurt, Sep 29 2013 */
(PARI) a(n)= n*(n^3-6*n^2+23*n-18)/24 \\ Wesley Ivan Hurt, Sep 29 2013
CROSSREFS
T(2n+1, n), array T as in A055794. Cf. A004006, A000127.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
EXTENSIONS
Better description from Leonid Broukhis, Oct 24 2000
Edited by Zerinvary Lajos, Jul 24 2006
Offset corrected and Sellers formula adjusted by Gary Detlefs, Nov 28 2011
STATUS
approved

Search completed in 0.035 seconds