タグ

bigqueryに関するheavenshellのブックマーク (5)

  • BigQueryで150万円溶かした人の顔 - Qiita

    ※ かなり前の記事ですが、未だに引用されるので一応追記しておきます。タイトルと画像がキャッチーなのはちょっと反省していますが、これを見てBigQuery使うのを躊躇している人は多分あまり内容を読んでいないので気にする必要はないです。自分は当時の会社でも今の会社でも個人でも普通にBigQuery使っていて解析用データなどはBigQueryに入れる設計をよくしています。また、アドベントカレンダーだったのでネタっぽく書きましたが事前に想定できる金額です。 ※ 代役:プロ生ちゃん(暮井 慧) 巷のBigQueryの噂と言えば「とにかく安い」「数億行フルスキャンしても早い」などなど。とりわけ料金に関しては保存しておくだけであれば無視できるほど安く、SQLに不慣れなプロデューサーがクエリを実行しても月数ドルで済むなど、賞賛すべき事例は枚挙に暇がありません。 しかし、使い方によってはかなり大きな金額を使

    BigQueryで150万円溶かした人の顔 - Qiita
  • Golang Error Handling lesson by Rob Pike - Block Rockin’ Codes

    Intro この記事は Go Advent Calendar 2014 の 15 日目の記事です。 例えばネットワークのフレーム処理的なものを書いている場合、以下のようなコードがよくでてきます。 There are many codes like this, while writing a Network Frame Parser program. var type uint8 err = binary.Read(r, binary.BigEndian, &type) if err != nil { return err } var length uint32 err = binary.Read(r, binary.BigEndian, &length) if err != nil { return err } ... 関数の中では、各要素の長さ毎に読み込んで、読み込みに失敗したらエラーを

    Golang Error Handling lesson by Rob Pike - Block Rockin’ Codes
  • Google BigQuery の話 #yapcasia // Speaker Deck

    フロントエンドのパラダイムを参考にバックエンド開発を再考する / TypeScript による GraphQL バックエンド開発

    Google BigQuery の話 #yapcasia // Speaker Deck
  • BigQuery と Google の Big Data Stack 2.0 - naoyaのはてなダイアリー

    先日、有志で集まって「BigQuery Analytics」という書籍の読書会をやった。その名の通り Google BigQuery について書かれた洋書。 BigQuery を最近仕事で使い始めたのだが、BigQuery が開発された背景とかアーキテクチャーとかあまり調べもせずに使い始めたので今更ながらその辺のインプットを増やして以降と思った次第。 それで、読書会の第1回目は書籍の中でも Overview に相当するところを中心に読み合わせていった。それだけでもなかなかに面白かったので少しブログにでも書いてみようかなと思う。 BigQuery の話そのものも面白いが、個人的には Google のインフラが書籍『Google を支える技術』で解説されたものが "Big Data Stack 1.0" だとして、BigQuery は Big Data Stack 2.0 の上に構築されており

    BigQuery と Google の Big Data Stack 2.0 - naoyaのはてなダイアリー
  • Googleの虎の子「BigQuery」をFluentdユーザーが使わない理由がなくなった理由 #gcpja - Qiita

    From Fluentd Meetupに行ってきました これを読んだ時、BigQueryの検索スピードについてちょっと補足したくなった。確かにFluentd Meetupのデモでは9億件を7秒程度で検索していたが、BigQueryの真の実力はこれより1〜2ケタ上だからだ。ちょっと手元で少し大きめのテーブルで試してみたら、120億行の正規表現マッチ付き集計が5秒で完了した。論より証拠で、デモビデオ(1分16秒)を作ってみた: From The Speed of Google BigQuery これは速すぎる。何かのインチキである(最初にデモを見た時そう思った)。正規表現をいろいろ変えてみてもスピードは変わらない。つまり、インデックスを事前構築できないクエリに対してこのスピードなのである。 価格も安い。さすがに120億行のクエリは1回で200円もかかって気軽に実行できなさそうであるが、1.2億

    Googleの虎の子「BigQuery」をFluentdユーザーが使わない理由がなくなった理由 #gcpja - Qiita
  • 1