login
A014190
Palindromes in base 3 (written in base 10).
55
0, 1, 2, 4, 8, 10, 13, 16, 20, 23, 26, 28, 40, 52, 56, 68, 80, 82, 91, 100, 112, 121, 130, 142, 151, 160, 164, 173, 182, 194, 203, 212, 224, 233, 242, 244, 280, 316, 328, 364, 400, 412, 448, 484, 488, 524, 560, 572, 608, 644, 656, 692, 728, 730, 757
OFFSET
1,3
COMMENTS
Rajasekaran, Shallit, & Smith prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020
LINKS
Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
Aayush Rajasekaran, Jeffrey Shallit, and Tim Smith, Sums of palindromes: an approach via automata, arXiv:1706.10206 [cs.FL], 2017.
Eric Weisstein's World of Mathematics, Palindromic Number.
Eric Weisstein's World of Mathematics, Ternary.
FORMULA
Sum_{n>=2} 1/a(n) = 2.61676111... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
MAPLE
isA014190 := proc(n)
local L;
L := convert(n, base, 3) ;
ListTools[Reverse](L) = L ;
end proc:
for n from 0 to 500 do
if isA014190(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jul 07 2015
MATHEMATICA
f[n_, b_] := Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 3], AppendTo[lst, n]], {n, 1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
PROG
(Magma) [n: n in [0..800] | Intseq(n, 3) eq Reverse(Intseq(n, 3))]; // Vincenzo Librandi, Sep 09 2015
(Sage)
[n for n in (0..757) if Word(n.digits(3)).is_palindrome()] # Peter Luschny, Sep 13 2018
(PARI) ispal(n, b=3)=my(d=digits(n, b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
(Python)
from gmpy2 import digits
def A014190(n):
if n == 1: return 0
y = 3*(x:=3**(len(digits(n>>1, 3))-1))
return int((c:=n-x)*x+int(digits(c, 3)[-2::-1]or'0', 3) if n<x+y else (c:=n-y)*y+int(digits(c, 3)[-1::-1]or'0', 3)) # Chai Wah Wu, Jun 13 2024
CROSSREFS
Cf. A007089, A118594, A134027, A330312 (first differences).
Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.
Sequence in context: A373807 A075333 A297250 * A141400 A190744 A190751
KEYWORD
nonn,base,easy
STATUS
approved