login
A007546
Number of steps to compute n-th prime in PRIMEGAME (fast version).
(Formerly M5074)
7
19, 69, 280, 707, 2363, 3876, 8068, 11319, 19201, 36866, 45551, 75224, 101112, 117831, 152025, 215384, 293375, 327020, 428553, 507519, 555694, 700063, 808331, 989526, 1273490, 1434366, 1530213, 1710923, 1818254, 2019962, 2833089, 3104685, 3546320, 3720785
OFFSET
1,1
REFERENCES
D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway, FRACTRAN: a simple universal programming language for arithmetic, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 4-26.
R. K. Guy, Conway's prime producing machine, Math. Mag. 56 (1983), no. 1, 26-33.
MAPLE
with(numtheory): f:= proc(n) local l, b, d; l:= sort([divisors (n)[]]); b:= l[nops(l)-1]; n-1 +(6*n+2)*(n-b) +2*add(floor(n/d), d=b..n-1) end: a:= proc(n) option remember; `if`(n=1, f(2), a(n-1) +add(f(i), i=ithprime(n-1)+1..ithprime(n))) end: seq(a(n), n=1..40); # Alois P. Heinz, Aug 12 2009
MATHEMATICA
f[n_] := Module[{l, b, d}, l = Divisors [n]; b = l[[-2]]; n-1 + (6*n+2)*(n-b) + 2*Sum[Floor[n/d], {d, b, n-1}]]; a[n_] := a[n] = If[n == 1, f[2], a[n-1] + Sum[f[i], {i, Prime[n-1]+1, Prime[n]}]]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Oct 04 2013, translated from Alois P. Heinz's Maple program *)
CROSSREFS
Sequence in context: A297226 A300463 A204675 * A007547 A217081 A010007
KEYWORD
easy,nonn,nice
EXTENSIONS
More terms from Alois P. Heinz, Aug 12 2009
STATUS
approved