login
A004614
Numbers that are divisible only by primes congruent to 3 mod 4.
34
1, 3, 7, 9, 11, 19, 21, 23, 27, 31, 33, 43, 47, 49, 57, 59, 63, 67, 69, 71, 77, 79, 81, 83, 93, 99, 103, 107, 121, 127, 129, 131, 133, 139, 141, 147, 151, 161, 163, 167, 171, 177, 179, 189, 191, 199, 201, 207, 209, 211, 213, 217, 223, 227, 231, 237, 239, 243, 249, 251
OFFSET
1,2
COMMENTS
Numbers whose factorization as Gaussian integers is the same as their factorization as integers. - Franklin T. Adams-Watters, Oct 14 2005
Closed under multiplication. Primitive elements are the primes of form 4*k+3. - Gerry Martens, Jun 17 2020
LINKS
Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 4.
FORMULA
Product(A079261(A027748(a(n),k)): k=1..A001221(a(n))) = 1. - Reinhard Zumkeller, Jan 07 2013
MAPLE
q:= n-> andmap(i-> irem(i[1], 4)=3, ifactors(n)[2]):
select(q, [$1..500])[]; # Alois P. Heinz, Jan 13 2024
MATHEMATICA
ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 3 &) /@ FactorInteger[n][[All, 1]]; Select[Range[251], ok] (* Jean-François Alcover, May 05 2011 *)
A004614 = Select[Range[251], Length@Reduce[s^2 + t^2 == s # && s # > t > 0, Integers] == 0 &] (* Gerry Martens, Jun 05 2020 *)
PROG
(PARI) for(n=1, 1000, if(sumdiv(n, d, isprime(d)*if((d-3)%4, 1, 0))==0, print1(n, ", ")))
(PARI) forstep(n=1, 999, 2, for(j=1, #t=factor(n)[, 1], t[j]%4==1 && next(2)); print1(n", ")) \\ M. F. Hasler, Feb 26 2008
(PARI) list(lim)=my(v=List([1]), cur, idx, newIdx); forprime(p=3, lim, if(p%4>1, listput(v, p))); for(i=2, #v, cur=v[i]; idx=1; while(v[idx]*cur <= lim, my(newidx=#v+1, t); for(j=idx, #v, t=cur*v[j]; if(t<=lim, listput(v, t))); idx=newidx)); Set(v) \\ Charles R Greathouse IV, Feb 06 2018
(Magma) [n: n in [1..300] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 3}]; // Vincenzo Librandi, Aug 21 2012
(Haskell)
a004614 n = a004614_list !! (n-1)
a004614_list = filter (all (== 1) . map a079261 . a027748_row) [1..]
-- Reinhard Zumkeller, Jan 07 2013
(Python)
from itertools import count, islice
from sympy import primefactors
def A004614_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n: n&1 and all(p&2 for p in primefactors(n>>(~n & n-1).bit_length())), count(max(startvalue, 1)))
A004614_list = list(islice(A004614_gen(), 30)) # Chai Wah Wu, Aug 21 2024
CROSSREFS
Cf. A004613.
Cf. A002145 (subsequence of primes).
Sequence in context: A129747 A354570 A354039 * A112398 A197504 A167800
KEYWORD
nonn,easy
STATUS
approved