Et venndiagram er i mengdelære en illustrasjon som brukes for å vise matematiske eller logiske forbindelser mellom ulike grupper av ting (mengder).

Et venndiagram viser alle de logiske forbindelsene mellom mengdene. Et eulerdiagram er liknende, men behøver ikke å vise alle forbindelsene.

Eksempler

rediger
 
Mengdene A og B

Den oransje sirkelen (mengde A) kan representere, for eksempel, alle levende vesener som er tobeinte. Den blå sirkelen (mengde B) kan representere alle levende vesener som kan fly. Det området hvor den blå og den oransje sirkelen overlapper (som kalles skjæringsfeltet) inneholder alle levende vesener som både kan fly og som har to bein – for eksempel papegøyer. (Tenk deg hver enkelt type vesen som et punkt et sted i diagrammet).

Mennesker og pingviner ville befunnet seg i den oransje sirkelen, i det området som ikke overlapper med den blå sirkelen. Mygg har seks bein og flyr, så punktet for mygg ville være i den delen av den blå sirkelen som ikke overlapper med den oransje. Ting som ikke har to bein og ikke kan fly (for eksempel hvaler og klapperslanger) ville alle sammen blitt representert av punkter utenfor begge sirkler. Teknisk sett kan venndiagrammet tolkes som «forbindelsene mellom mengde A og mengde B som kan ha noen (men ikke alle) elementer felles».

Det samlede arealet av mengdene A og B blir kalt unionen av mengdene A og B. Unionen i dette tilfellet inneholder alle ting som enten har to bein, eller som flyr, eller begge deler. At sirklene overlapper innebærer at unionen av de to mengdene ikke er tom – at det faktisk er vesener som er i både den oransje og den blå sirkelen.

Noen ganger blir et rektangel (som kalles universalmengden) tegnet omkring venndiagrammet for å vise rommet for alle mulige ting. Som tidligere nevnte ville en hval blitt representert av et punkt som ikke er i unionen, men som er i universet (av levende vesener, eller av alle ting, avhengig av hvordan man velger å definere universalmengden for akkurat det diagrammet).

Liknende diagrammer

rediger

Eulerdiagrammer

rediger
 
Et eulerdiagram

Eulerdiagrammer har likheter med venndiagrammer, men behøver ikke vise alle mulige forbindelser. I diagrammet til høyre er en mengde fullstendig inni en annen. La oss si at mengde A er alle de ulike typene ost som fins i verden og mengde B er alle matvareslag som fins i verden. Fra diagrammet kan du se at alle oster er matvarer, men ikke alle matvarer er oster. La oss videre ta at mengde C (la oss si alle ting laget av metall) ikke har noen elementer (medlemmer av mengden) felles med mengde B, og utfra det kan vi logisk påstå at ingen matvareslag er metallting (og vice versa). Diagrammet kan tolkes som:

Mengde A er en ekte delmengde av mengde B, men mengde C har ingen elementer felles med mengde B. Eller, som en syllogisme
  • Alle Aer er Ber
  • Ingen Cer er Br
  • Derfor er ingen Cer Aer.
  • Derfor er ingen Aer Cer.

Johnston-diagrammer

rediger
 
Johnston-diagram for påstanden Hverken A eller B er sanne

Et Johnston-diagram kan bli brukt for å illustrere påstander i proposisjonslogikk. Et eksempel på en slik påstand er «Hverken A eller B er sanne». Diagrammet er en visuell måte å illustrere sannhetstabeller på. Det kan være identisk utseendemessig med et venndiagram, men det representerer ikke objektmengder.

Karnaugh-kart

rediger

Karnaugh-kart eller Veitch-diagrammer er en annen måte å visualisere et uttrykk i boolsk algebra.

Peirce-diagrammer

rediger

Peirce-diagrammer, utformet av Charles Peirce, er utvidelser av venndiagrammer. Disse diagrammene inkluderer informasjon om eksistensielle påstander, atskillende informasjon, sannsynligheter og relasjoner. [1].

Utvidelser til høyere antall mengder

rediger

Venndiagrammer har gjerne tre mengder. Venn var oppsatt på å finne symmetriske figurer...elegante i seg selv som representerte høyere antall mengder, og han utformet et firemengdersdiagram ved bruk av ellipser. Han ga også en konstruksjon for venndiagrammer for ethvert antall kurver, der hver ny kurve innfelles i de tidligere kurvene, begynnende med 3-sirkelsdiagrammet.

Edwards' venndiagrammer

rediger
 
Edwards' venndiagram med tre mengder
 
Edwards' venndiagram med fire mengder
 
Edwards' venndiagram med fem mengder
 
Edwards' venndiagram med seks mengder

A. W. F. Edwards ga en fin konstruksjon for høyere antall mengder som innehar enkelte symmetrier. Hans konstruksjon kan oppnås ved å projisere venndiagrammet på en sfære. Tre mengder kan enkelt representeres ved å ta tre halvkuler i rette vinkler (x≥0, y≥0 og z≥0). En fjerde mengde kan representeres ved å ta kurver lik dem du finner på sømmen på en tennisball som snor seg opp og ned rundt ekvator. Den resulterende mengden kan så projiseres tilbake til planet for å gi et tannhjul-diagram med økende antall tenner. Disse diagrammene ble utformet under lagingen av et glassmalerivindu til minne om Venn.

Andre diagrammer

rediger

Edwards' venndiagrammer er topologisk ekvivalente med diagrammer utformet av Branko Grünbaum som var basert omkring polygoner som skjærer hverandre med økende antall sider. De er også 2-dimensjonale representasjoner av hyperkuber.

Smith utformet liknende n-mengdediagrammer ved bruk av sinus-kurver med likningen y=sin(2ix)/2i, 0≤i≤n-2.

Charles Lutwidge Dodgson (også kjent som Lewis Carroll) utformet et fem-mengders diagram.

Opprinnelse

rediger

John Venn var en britisk filosof og matematiker i det 19. århundre. Han introduserte venndiagrammet i 1881.

Et glassmalerivindu på Caius College på Cambridge-universitet er til minne om oppfinnelsen hans.

Se også

rediger

Kilder

rediger

Eksterne lenker

rediger

Verktøy til å lage venndiagrammer

rediger

Verktøy til å lage eulerdiagrammer

rediger