- Benchmark Dataset → Tanks and Temples
Render Img1 (Novel View Synthesis) | Render Img2 (Novel View Synthesis) | Render Img3 (Novel View Synthesis) |
- 3D Gaussian Splatting
- NetVLAD Pytorch
- Faiss
- Anaconda
- OpenCV with Contrib
- RoMa
- LightGlue
- SuperPoint
- Feature Matching
Download pre-trained model
(1) cameras.txt → [IMAGE_ID, CAMERA TYPE, IMAGE Width, IMAGE HEIGHT, ~]
(2) images.txt → [IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME]
(3) image folder
-
Using NetVLAD Method to make global descriptor
- KeyFrame = {Index, Image, Keypoints, Descriptor(local or global), Camera Pose, Camera Type, Camera Params}
-
extractor_method (
extractor_utils.py
):- 0 → apply ORB
- 1 → apply SIFT
- 2 → apply AKAZE
- 3 → apply SuperPoint Model
roma_based_extractor
function → apply RoMa Model
-
descriptor_method (
extractor_utils.py
):- 0 → apply ORB
- 1 → apply SURF
- 2 → apply DAISY
- 3 → apply AKAZE
- 4 → apply SuperPoint Model
-
matcher_mode (
matching_utils.py
):calculate_score
function → apply BF Matcher (Brute-Force) + KNN Matchesroma_based_extractor
function → apply RoMa Modellightglue_matcher
function → apply LightGlue Model
-
REJECTION_MODE (using
cv2
):- apply cv2.fundamentalMatrix