Order-8 triangular tiling

(Redirected from 444 symmetry)
Order-8 triangular tiling
Order-8 triangular tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 38
Schläfli symbol {3,8}
(3,4,3)
Wythoff symbol 8 | 3 2
4 | 3 3
Coxeter diagram
Symmetry group [8,3], (*832)
[(4,3,3)], (*433)
[(4,4,4)], (*444)
Dual Octagonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-8 triangular tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {3,8}, having eight regular triangles around each vertex.

Uniform colorings

edit

The half symmetry [1+,8,3] = [(4,3,3)] can be shown with alternating two colors of triangles:

 

Symmetry

edit
 
Octagonal tiling with *444 mirror lines,     .

From [(4,4,4)] symmetry, there are 15 small index subgroups (7 unique) by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. Adding 3 bisecting mirrors across each fundamental domains creates 832 symmetry. The subgroup index-8 group, [(1+,4,1+,4,1+,4)] (222222) is the commutator subgroup of [(4,4,4)].

A larger subgroup is constructed [(4,4,4*)], index 8, as (2*2222) with gyration points removed, becomes (*22222222).

The symmetry can be doubled to 842 symmetry by adding a bisecting mirror across the fundamental domains. The symmetry can be extended by 6, as 832 symmetry, by 3 bisecting mirrors per domain.

Small index subgroups of [(4,4,4)] (*444)
Index 1 2 4
Diagram            
Coxeter [(4,4,4)]
    
[(1+,4,4,4)]
      =      
[(4,1+,4,4)]
     =      
[(4,4,1+,4)]
     =      
[(1+,4,1+,4,4)]
     
[(4+,4+,4)]
    
Orbifold *444 *4242 2*222 222×
Diagram          
Coxeter [(4,4+,4)]
    
[(4,4,4+)]
    
[(4+,4,4)]
    
[(4,1+,4,1+,4)]
    
[(1+,4,4,1+,4)]
      =      
Orbifold 4*22 2*222
Direct subgroups
Index 2 4 8
Diagram          
Coxeter [(4,4,4)]+
    
[(4,4+,4)]+
      =      
[(4,4,4+)]+
     =      
[(4+,4,4)]+
     =      
[(4,1+,4,1+,4)]+
      =     
Orbifold 444 4242 222222
Radical subgroups
Index 8 16
Diagram            
Coxeter [(4,4*,4)] [(4,4,4*)] [(4*,4,4)] [(4,4*,4)]+ [(4,4,4*)]+ [(4*,4,4)]+
Orbifold *22222222 22222222
edit
 
The {3,3,8} honeycomb has {3,8} vertex figures.
*n32 symmetry mutation of regular tilings: {3,n}
Spherical Euclid. Compact hyper. Paraco. Noncompact hyperbolic
                       
3.3 33 34 35 36 37 38 3 312i 39i 36i 33i

From a Wythoff construction there are ten hyperbolic uniform tilings that can be based from the regular octagonal and order-8 triangular tilings.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 10 forms.

Uniform octagonal/triangular tilings
Symmetry: [8,3], (*832) [8,3]+
(832)
[1+,8,3]
(*443)
[8,3+]
(3*4)
{8,3} t{8,3} r{8,3} t{3,8} {3,8} rr{8,3}
s2{3,8}
tr{8,3} sr{8,3} h{8,3} h2{8,3} s{3,8}
                                                     
     
    
     
    
     
    
           
     or     
     
     or     
     
    
     
 
 
 
 
 
             
 
Uniform duals
V83 V3.16.16 V3.8.3.8 V6.6.8 V38 V3.4.8.4 V4.6.16 V34.8 V(3.4)3 V8.6.6 V35.4
                                                                 
                     
Regular tilings: {n,8}
Spherical Hyperbolic tilings
 
{2,8}
     
 
{3,8}
     
 
{4,8}
     
 
{5,8}
     
 
{6,8}
     
 
{7,8}
     
 
{8,8}
     
...  
{∞,8}
     

It can also be generated from the (4 3 3) hyperbolic tilings:

Uniform (4,3,3) tilings
Symmetry: [(4,3,3)], (*433) [(4,3,3)]+, (433)
                                       
                                               
               
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
               
V(3.4)3 V3.8.3.8 V(3.4)3 V3.6.4.6 V(3.3)4 V3.6.4.6 V6.6.8 V3.3.3.3.3.4
Uniform (4,4,4) tilings
Symmetry: [(4,4,4)], (*444) [(4,4,4)]+
(444)
[(1+,4,4,4)]
(*4242)
[(4+,4,4)]
(4*22)
    
     
    
     
    
     
    
     
    
     
    
     
    
     
    
     
    
     
    
     
                   
t0(4,4,4)
h{8,4}
t0,1(4,4,4)
h2{8,4}
t1(4,4,4)
{4,8}1/2
t1,2(4,4,4)
h2{8,4}
t2(4,4,4)
h{8,4}
t0,2(4,4,4)
r{4,8}1/2
t0,1,2(4,4,4)
t{4,8}1/2
s(4,4,4)
s{4,8}1/2
h(4,4,4)
h{4,8}1/2
hr(4,4,4)
hr{4,8}1/2
Uniform duals
                   
V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V8.8.8 V3.4.3.4.3.4 V88 V(4,4)3

See also

edit

References

edit
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
edit