Elfeck

Polygon mit elf Seiten und elf Ecken

Ein Elfeck (auch Hendekagon; von altgriechisch ἕνδεκα héndeka, deutsch ‚elf‘ und γωνία gōnía, deutsch ‚Winkel, Ecke‘)[1] ist ein Polygon mit elf Seiten und elf Ecken.

Regelmäßiges Elfeck
Regelmäßiges Elfeck

Im Folgenden wird zuerst das ebene, regelmäßige Elfeck betrachtet. Es ist konvex, alle Seiten sind gleich lang und die Eckpunkte liegen auf einem gemeinsamen Umkreis. Regelmäßige überschlagene Elfecke sind daran anschließend dargestellt.

Allgemeines, ebenes, nicht überschlagenes Elfeck

Bearbeiten

Eigenschaften

Bearbeiten
  • Die Summe der Innenwinkel beträgt  
  • Die Anzahl der Diagonalen ist  .

Regelmäßiges Elfeck

Bearbeiten

Eigenschaften

Bearbeiten

Das regelmäßige Elfeck ist nicht mit Zirkel und Lineal konstruierbar, denn   ist eine Primzahl, die keine Fermatsche Primzahl ist, siehe konstruierbares Polygon. Es lässt sich auch nicht unter Zuhilfenahme eines Hilfsmittels zur Dreiteilung eines Winkels konstruieren und es ist das regelmäßige Polygon mit der kleinsten Eckenzahl mit dieser Eigenschaft.

Für ein regelmäßiges Elfeck mit dem Umkreisradius   und dem Zentriwinkels   gilt:

Seitenlänge  
 
Inkreisradius  
 
Fläche  
 

Geschichte

Bearbeiten

Flächenberechnung nach Heron

Bearbeiten

Heron von Alexandria konstruierte in seinem Buch Metrika im 1. Jhdt. v. Chr. die Flächen regelmäßiger Polygone mit 3, 5, 6, 8, 10 und 12 Seiten und gab Näherungslösungen für das Siebeneck, das Neuneck und das Elfeck an. Für das Neuneck und das Elfeck berief er sich dabei auf Winkelnäherungen aus dem Werk Über die Sehnen (Περὶ τῶν ἐν κὐκλῳ εὐθειῶν, wohl die Chordentafel des Hipparchos von Nicäa).[2] Die Näherungsformel für die Fläche eines regelmäßigen Elfecks lautet demnach

 ,

wobei   die Seitenlänge des Elfecks ist.[3]

Geometrische Konstruktionen

Bearbeiten

Das regelmäßige Elfeck ist, wie bereits im Abschnitt Eigenschaften näher beschrieben, unter alleiniger Verwendung der klassischen Konstruktionsmittel Zirkel und Lineal nicht darstellbar. Nimmt man jedoch ein zusätzliches Hilfsmittel, das die Teilung des 90-Grad-Winkels in   gleich große Winkel erlaubt, z. B. die archimedische Spirale oder die Quadratrix des Hippias, ist eine exakte Lösung möglich. Näherungskonstruktionen hierfür sind selbstverständlich machbar, es sind aber nur wenige in der einschlägigen Literatur zu finden.

Quadratrix des Hippias als zusätzliches Hilfsmittel

Bearbeiten
 
Regelmäßiges Elfeck mit vorgegebenem Umkreis als exakte Konstruktion mit der Quadratrix des Hippias als zusätzliches Hilfsmittel

Nach dem Zeichnen des Quadrates, z. B. mit der Seitenlänge  , und des Umkreises um den Punkt   durch   erfolgt die Konstruktion der speziellen Kurve, der sogenannten Quadratrix des Hippias, mit der Parameterdarstellung  :[4][5]

 

mit

 

Danach wird die Strecke   in elf gleich lange Abschnitte mithilfe der Streckenteilung geteilt. Aus Gründen der Übersichtlichkeit sind in der Zeichnung nur die relevanten Punkte dargestellt.

Der Zentriwinkels des Elfecks ergibt sich aus   aber die Quadratrix des Hippias unterteilt nur die Winkel ab   bis   in gleich große Winkel. Daraus folgt, ein Elftel der Strecke   kann nur ein Elftel des Winkels   erzielen. Deshalb wird wegen der Berechnung des Zentriwinkels   aus dem Umkreis mit seinen   das Vierfache eines Elftels, d. h. der Teilungspunkt   der Strecke   zur Konstruktion des Zentriwinkels   genutzt. Dieser entsteht nach der Konstruktion einer Parallelen zu   ab   bis zur Kurve der Quadratrix, dabei ergibt sich der Punkt  . Nun zieht man eine Halbgerade ab dem Winkelscheitel   durch   bis zum Umkreis. Somit ergibt sich auf dem Umkreis der zweite Eckpunkt  . Die Länge der Strecke   ist die exakte Seitenlänge   des regelmäßigen Elfecks.

Nach dem neunmaligen Abtragen der Seitenlänge   auf dem Umkreis gegen den Uhrzeigersinn und dem abschließenden Verbinden der benachbarten Eckpunkte, ist das Elfeck   fertiggestellt.

Bei gegebener Seitenlänge

Bearbeiten
 
Regelmäßiges Elfeck mit vorgegebener Seitenlänge   (grün).
Weiterführung einer exakten Konstruktion (mithilfe der Quadratrix) oder einer Näherungskonstruktion.

Ist die Seitenlänge   eines Elfecks mit vorgegebenem Umkreis bereits – exakt mithilfe der Quadratrix oder näherungsweise – bestimmt (siehe nebenstehende Zeichnung), kann daraus mithilfe der sogenannten zentrischen Streckung ein Elfeck mit vorgegebener Seitenlänge   konstruiert werden.

Nur falls die vorgegebene Seitenlänge   länger als   ist, werden zuerst beide Winkelschenkel des Zentriwinkels   verlängert. Als Nächstes wird die Winkelhalbierenden   des Winkels   eingezeichnet und anschließend darauf der Punkt   mit beliebiger Position bestimmt. Es folgt eine Parallele zu   durch  . Beim Ziehen des Halbkreises um   mit Radius   ergeben sich die Schnittpunkte   und  . Die beiden Parallelen zu   ab   bzw.  , bis zu den betreffenden Winkelschenkeln, liefern die beiden ersten Eckpunkte   und   des gesuchten Elfecks. Abschließend wird der somit gefundene Umkreis mit dem Radius   um   gezogen, ab dem Eckpunkt   die Seitenlänge   neunmal gegen den Uhrzeigersinn auf dem Umkreis abgetragen und die benachbarten Eckpunkte miteinander verbunden.

Näherungskonstruktion nach Dürer

Bearbeiten

Albrecht Dürer beschreibt in seinem Werk Underweysung der messung mit dem zirckel und richtscheyt in Linien ebnen unnd gantzen corporen (1525) die Konstruktion eines in einen Kreis einbeschriebenen regelmäßigen Elfecks:[6]

 
Konstruktion eines regelmäßigen Elf- und Dreizehnecks nach Dürer (1525)

„So jch bald ein eylf eck in ein zirckel reyssen will
nym jch ein vierteyl von des zirckels diameter vnd erleng jn ein acht teyl auß jm selbs
vnd far mit diser leng herumb im zirckel das tryt beileuoftig ein
also das es sich Mechanice
aber nit demonstratiue findet“

Man nimmt also ein Viertel des Kreisdurchmessers, zerlegt es in acht gleiche Teile und verlängert es um einen Teil. Diese Strecke legt man dann elfmal auf dem Kreis an. Dürer weist explizit darauf hin, dass es sich dabei um eine näherungsweise („mechanische“) und nicht um eine exakte („demonstrative“) Konstruktion handelt. Die so erhaltene Näherung der Seitenlänge des Elfecks von

 

liegt aber sehr nahe am exakten Wert von  , wobei   der Kreisdurchmesser ist. Der relative Fehler der Näherung beträgt dabei weniger als 0,2 %.

Ein ergänzendes Beispiel zur Verdeutlichung des absoluten Fehlers:

Bei einem Umkreisradius R = 10 m, wäre der Fehler der ersten Elfeckseite ca. 9,6 mm.

Näherungskonstruktion nach Drummond

Bearbeiten

Die folgende Animation der Konstruktion – Elfeck im Kreis einbeschrieben[7] – ist eine Weiterführung der Basiskonstruktion nach T. Drummond aus dem Jahr 1800.

Elfeck im Kreis einbeschrieben, eine Weiterführung der Basiskonstruktion nach T. Drummond.
Entspricht dem Kupferstich von Anton Ernst Burkhard von Birckenstein, Animation siehe.
Elfeck, Kupferstich um 1698 von Anton Ernst Burkhard von Birckenstein
Quelle: Deutsche Fotothek

Zunächst wird der Umkreis mit dem Radius AB gezeichnet und anschließend AB in C halbiert. Nun zieht man um A und C mit dem Radius AC jeweils ein Kreisbogen. Der Kreisbogen um A schneidet den Umkreis in I und die beiden Kreisbogen ergeben den Schnittpunkt D. Als Nächstes wird um I ein letzter Kreisbogen mit dem Radius ID gezogen. Er schneidet den Umkreis in O. Verbindet man abschließend O mit C, ist die Strecke OC, so wie Drummond anmerkt: "... die Seite eines Elfecks deren Länge für die Praxis ausreichend genau sein wird."

Das Ergebnis in einem Einheitskreis mit R = 1 [LE]

Konstruierte Seite des Elfecks  [LE]
Seite des Elfecks   [LE]
Der absolute Fehler der konstruierten Seite   [LE]

Ein Beispiel zur Verdeutlichung des absoluten Fehlers:

Bei einem Umkreisradius R = 10 m, wäre der Fehler der ersten Elfeckseite ca. 2,3 mm.

Näherungskonstruktion durch Sinuswerte

Bearbeiten

Eine weitere Näherung ergibt sich durch

 

Der Wert für   weicht vom Wert für   nur um 0,06863 % ab. Bei einem Radius von 2,586 m ist die Seite 1 mm zu lang.

Regelmäßige überschlagene Elfecke

Bearbeiten

Ein regelmäßiges überschlagenes Elfeck ergibt sich, wenn beim Verbinden der elf Eckpunkte jedes Mal mindestens einer übersprungen wird und die somit erzeugten Sehnen gleich lang sind. Notiert werden solche regelmäßigen Sterne mit Schläfli-Symbolen  , wobei   die Anzahl der Eckpunkte angibt und jeder  -te Punkt verbunden wird.

In der folgenden Galerie sind die vier möglichen regelmäßigen Elfstrahlsterne, auch Hendekagramme genannt, dargestellt.

Verwendung

Bearbeiten
US-amerikanische Ein-Dollar-Münze Tschechische Zwei-Kronen-Münze
Vorderseite
Rückseite
Vorderseite
Rückseite

Literatur

Bearbeiten
Bearbeiten
Commons: Elfecke – Sammlung von Bildern
Wiktionary: Elfeck – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

Bearbeiten
  1. Wilhelm Pape, Max Sengebusch (Bearb.): Handwörterbuch der griechischen Sprache. 3. Auflage, 6. Abdruck. Vieweg & Sohn, Braunschweig 1914 (zeno.org [abgerufen am 2. Juli 2024]).
  2. Johannes Tropfke: Geschichte der Elementar-Mathematik in systematischer Darstellung. 2. Auflage. Band 5. Walter De Gruyter, 1923, S. 14.
  3. Thomas L. Heath: A Manual of Greek Mathematics (= Dover Books on Mathematics Series). Courier Dover Publications, 2003, ISBN 978-0-486-43231-1, S. 426 (englisch).
  4. Hans-Wolfgang Henn: Elementare Geometrie und Algebra. Verlag Vieweg+Teubner 2003, S. 45–48 Die Quadratur des Kreises (Auszug (Google)), abgerufen am 29. Oktober 2017
  5. Horst Hischer: Mathematik in der Schule 32 (1994) 5, Geschichte der Mathematik als didaktischer Aspekt (2). Lösung klassischer Probleme. S. ab 279, abgerufen am 29. Oktober 2017.
  6. Albrecht Dürer: Underweysung der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen unnd gantzen corporen. Nürnberg 1525 (ETH-Bibliothek, Konstruktion eines regelmäßigen Elf- und Dreizehnecks, S. 63, Fig 19 [abgerufen am 4. Oktober 2016]).
  7. T. Drummond, (1800) The Young Ladies and Gentlemen's AUXILIARY, in Taking Heights and Distances ..., Konstruktionsbeschreibung Seite 15–16 Fig. 40: blättere ab Seite 69 ... bis Seite 76 Part I. Second Edition, abgerufen am 26. März 2016