タグ

PRMLに関するttpoohのブックマーク (14)

  • LiAの「薮から棒な独り言」 - [物] JIGAZO PUZZLE(自画像パズル)が本当にすごかった。

    ttpooh
    ttpooh 2010/08/30
    面白い!無機質に「ピースA3を位置K10に」とかじゃなく、シンボルを探しながら、ってのがいいのかな。/ピースは顔特徴量の分布から作ってるんだろうなあ。しかし与えられた画像への最適化はどうやってるんだろう。
  • 顔画像処理技術の研究動向と応用事例 - A Successful Failure

    情報処理に2ヶ月連続で顔画像処理技術のサーベイが掲載されている*1,*2。サーベイ著者らの研究業績紹介にやや偏っている印象があるが、興味深く、有用なサーベイとなっているのでポイントだけ整理してまとめておく。なお、最近話題になったモノを中心に元論文にはない複数の項目を追加している。 顔画像処理技術 顔検出 画像の中から漏れなく誤りなくリアルタイムで顔の位置を検出する技術。動画処理時にはトラッキングも必要。 ViolaとJonesによるHaarタイプの特徴量を用いた高速顔検出手法*3をベースとして多くの改善手法が提案されている。 顔特徴点検出 顔の性別、年齢を含めた属性推定や個人識別を行うために、顔の各器官の特徴点の検出を行う技術。 多種特徴点抽出に対応したCootesらのActive Shape Model(ASM)やActive Appearance Model(AAM)が有名*4。拡張・

    顔画像処理技術の研究動向と応用事例 - A Successful Failure
  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • コントローラー不要、体でゲームプレイができる「Project Natal」 MSが発表

    Microsoftは6月1日、ゲーム業界展示会E3で、映画監督スティーブン・スピルバーグ氏の手による、コントローラー不要の新たなゲーム操作システム「Project Natal」を発表した。 Project Natalは「コントローラーの要らない、新しい革命的なプレイ方法」のコードネーム。Xbox 360に対応する。RGBカメラ、センサー、マイク、カスタムプロセッサと独自ソフトを1つのデバイスに統合したもので、手足を動かす、ジャンプする、尻を振るといった体の動きでゲームを操作できるようにする。体の動きを3Dでとらえて、指示や方向、声の調子に反応する。

    コントローラー不要、体でゲームプレイができる「Project Natal」 MSが発表
    ttpooh
    ttpooh 2009/06/03
    現状でどのレベルのものができてるんだろう。エンタメならではのチューニング・要件絞込みでどこまで自然なexperienceに仕立て上げるか、見もの。
  • mots quotidiens.

    NAACL/HLT 2009に出る予定の論文, "Global Models of Document Structure Using Latent Permutations" [pdf] [code] が面白そうだったので, 読んでみた。 若干仮定が強すぎたりする面はありますが, 興味深い話で, 理解を深めるためにこの場所を使って整理。 これは一言で言うと, 潜在トピックの表れる順序に一般化Mallows Modelを 仮定して文書構造を表現する, という話で, 実は自然言語処理一般に 有益な可能性がある話だと思う。 Mallows Modelが順序の確率分布だということは前から知っていたものの, ランキングの研究をしているわけではないので, 自分にはとりあえず関係ないと思ってこれまでスルーしていた。 Barzilayのグループは以前から文書構造の研究をしていますが, 今回は新しい話で,

  • Google Similar Images

    Refine your image search with visual similarity Similar Images allows you to search for images using pictures rather than words. Click the "Similar images" link under an image to find other images that look like it. Try a search of your own or click on an example below. paris

  • Perlでアニメ顔を検出&解析するImager::AnimeFace - デー

    というのを作ったので自己紹介します。 2月頃から、コンピュータでアニメ顔を検出&解析する方法をいろいろ試しつつ作っていて、その成果のひとつとして、無理やり出力したライブラリです。 はじめに はじめにざっとライブラリの紹介を書いて、あとのほうでは詳細な処理の話を僕の考えを超交えつつグダグだと書きたいと思います。 Imager::AnimeFaceでできること Imager::AnimeFaceは、画像に含まれるアニメキャラクター的な人物の顔の位置を検出し、さらに目や口など顔を構成する部品位置や大きさの推定、肌や髪の色の抽出を簡単に行うことができるライブラリです。 これらが可能になると、 画像から自動でいい感じのサムネイルを作成できる 動画から自動でいい感じのサムネイルを作成できる 自動的にぐぬぬ画像が作れる 自動的に全員の顔を○○にできる 顔ベースのローカル画像検索 など、最新鋭のソリューシ

    Perlでアニメ顔を検出&解析するImager::AnimeFace - デー
  • 大規模データを基にした自然言語処理 - DO++

    人工知能問題研究会 (SIG-FPAI)でタイトルの題目で一時間ほど話してきました。 発表資料 [pptx] [pdf] 話した内容は - 自然言語処理における特徴ベクトルの作り方と、性質 - オンライン学習, Perceptron, Passive Agressive (PA), Confidence Weighted Learning (CW) 確率的勾配降下法 (SGD) - L1正則化, FOLOS - 索引を用いた効率化, 全ての部分文字列を利用した文書分類 で、スライドで70枚ぐらい。今までの発表とかぶっていないのはPA CW SGD FOLOSあたりでしょうか オンライン学習、L1正則化の話がメインになっていて、その両方の最終形の 確率的勾配降下法 + FOLOSの組み合わせは任意の損失関数に対してL1/L2正則化をかけながらオンライン学習をとても簡単にできるという一昔前

    大規模データを基にした自然言語処理 - DO++
    ttpooh
    ttpooh 2009/03/25
    資料だけでも激しく勉強になった。
  • 最大マージン kNN と SVM の関係: kNN も最近はがんばっています - 武蔵野日記

    先日書いた機械学習における距離学習の続き。 kNN (k-nearest neighbour: k 近傍法)は Wikipedia のエントリにも書いてある通り、教師あり学習の一つで、あるインスタンスのラベルを周辺 k 個のラベルから推定する手法。memory-based learning と呼ばれることもある。単純に多数決を取る場合もあれば(同点を解決する必要があるが)、近いインスタンスの重みを大きくする場合もあるのだが、いずれにせよかなり実装は単純なので、他の機械学習との比較(ベースライン)として使われることも多い。 簡単なアルゴリズムではあるが、1-NN の場合このアルゴリズムの誤り率はベイズ誤り率(達成可能な最小誤り率)の2倍以下となることが示されたり、理論的にもそれなりにクリアになってきているのではないかと思う。また、多クラス分類がちょっと一手間な SVM (pairwise に

    ttpooh
    ttpooh 2009/02/19
    距離学習のLMNNとか高速なSVM実装(?)のCVM/BVMとか。うーん、全然フォローできてないなぁ・・・せめてKDDぐらいチェックせねば。
  • 大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記

    id:naoya さんのLatent Semantic Indexing の記事に触発されて、ここ1週間ほどちょくちょく見ている行列の近似計算手法について書いてみる。ここでやりたいのは単語-文書行列(どの単語がどの文書に出てきたかの共起行列)や購入者-アイテム行列(どの人がどのを買ったかとか、推薦エンジンで使う行列)、ページ-リンク行列(どのページからどのページにリンクが出ているか、もしくはリンクをもらっているか。PageRank などページのランキングの計算に使う)、といったような行列を計算するとき、大規模行列だと計算量・記憶スペースともに膨大なので、事前にある程度計算しておけるのであれば、できるだけ小さくしておきたい(そして可能ならば精度も上げたい)、という手法である。 行列の圧縮には元の行列を A (m行n列)とすると A = USV^T というように3つに分解することが多いが、も

    大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記
    ttpooh
    ttpooh 2009/02/19
    SVDよりお得なCURの紹介。要チェック。
  • 自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記

    Twitter でグラフ理論に関する話題が上がっていたので、最近調べている距離学習(distance metric learning)について少しまとめてみる。カーネルとか距離(類似度)とかを学習するという話(カーネルというのは2点間の近さを測る関数だと思ってもらえれば)。 この分野では Liu Yang によるA comprehensive survey on distance metric learning (2005) が包括的なサーベイ論文として有名なようだが、それのアップデート(かつ簡略)版として同じ著者によるAn overview of distance metric learning (2007) が出ているので、それをさらに簡略化してお届けする(元論文自体文は3ページしかないし、引用文献のあとに表が2ページあって、それぞれ相違点と共通点がまとまっているので、これを見ると非

    自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記
    ttpooh
    ttpooh 2009/01/28
    サーベイ知らなかったorz しかしすげー密度だw/以前ざっと調べた教師ありのは外れ値的なのに弱い印象だった。Bayesian何某はそこんところ考慮してくれてるのかな。
  • クローリングしてる暇があるなら…論文かいたら? | EDGE Datasets(研究用データセット)

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert

    クローリングしてる暇があるなら…論文かいたら? | EDGE Datasets(研究用データセット)
    ttpooh
    ttpooh 2009/01/17
    すばらしい。/意を決して会社のMtg.でこのページ見せたけど後で普通にプレスリリースがあることを知ってショック!!!いいけど。
  • しかしSVMも最近は速いらしい - 射撃しつつ前転 改

    Complement Naive BayesがSVMより速いよーと主張していたので、SVMもなんか最近は速くなってるらしいよ、という事を紹介してみたい。近年はSVMなどの学習を高速に行うという提案が行われており、実装が公開されているものもある。その中の一つにliblinearという機械学習ライブラリがある。ライブラリ名から推測できる通り、liblinearではカーネルを使うことが出来ない。しかし、その分速度が速く、大規模データに適用できるという利点がある。 liblinearを作っているのはlibsvmと同じ研究グループで、Chih-Jen Linがプロジェクトリーダーであるようだ。libsvmはかなり有名なライブラリで、liblinearにはそういった意味で安心感がある。(liblinearの方は公開されてしばらくは割とバグがあったらしいけど。) liblinearにはL1-SVM, L

    しかしSVMも最近は速いらしい - 射撃しつつ前転 改
    ttpooh
    ttpooh 2008/12/20
    線形オンリーのSVMライブラリ、liblinear。/つか56userもブクマついてるのに驚き。id:naoyaがブクマしたから?
  • 新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改

    新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ

    新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改
    ttpooh
    ttpooh 2008/12/20
    論文>http://www.hpl.hp.com/conferences/icml2003/papers/278.pdf/カテゴリの事前確率が一様、という仮定と実際の学習を(なるべく)一致させた、ってことかな。/PFIの仕事。
  • 1