Sorry, JavaScript is required to view Global Stats charts.
Sorry, JavaScript is required to view Global Stats charts.
追記(2017年7月) こちらのスキル要件ですが、2017年版を新たに書きましたので是非そちらをご覧ください。 「データサイエンティストというかデータ分析職に就くためのスキル要件」という話題が某所であったんですが、僕にとって馴染みのあるTokyoR界隈で実際に企業のデータ分析職で活躍している人たちのスキルを眺めてみるに、 みどりぼん程度の統計学の知識 はじパタ程度の機械学習の知識 RかPythonでコードが組める SQLが書ける というのが全員の最大公約数=下限ラインかなぁと。そんなわけで、ちょろっと色々与太話を書いてみます。なお僕の周りの半径5mに限った真実かもしれませんので、皆さん自身がどこかのデータサイエンティスト()募集に応募して蹴られたとしても何の保証もいたしかねますので悪しからず。 統計学の知識は「みどりぼん以上」 データ解析のための統計モデリング入門――一般化線形モデル・階層
cvpaper.challengeはコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ・アイディア考案・議論・実装・論文投稿に取り組み、凡ゆる知識を共有しています。 http://xpaperchallenge.org/cv/ 本資料はViEW2021チュートリアルセッション「最新研究の始め方」のプレゼン素材です。また、xpaper.challengeの2020年末ワークショップとしてプレゼンした「研究効率化Tips」の拡張版です。本資料では3社12研究室300ページにわたるノウハウの詰め合わせです。 VIEW2021のチュートリアルセッションでは時間の制限があるため、こちらの資料から一部抜粋して発表を行うことになりますが、VIEW2021チュートリアルセッションの方にも足を運んでいただければ幸いです。 VIEW2021チュートリアルセッション:http://vie
CEDEC2013にて発表させていただいた内容の一般公開用スライドです。 ネットサービスの基本中の基本とされるKPI 「DAU(Daily Active Users)」。売上の分解にも使いやすく、複数のサービスを比較するときには必須の指標です。しかし、運営の現場では「ノイズが多くて使いにくい」「経営者(えらい人)にサービスの状況の誤解を与える」という扱いを受けがちな指標でもあります。 セッションの内容 : 本セッションでは、ソーシャルゲームのDAUを題材に、測り方にほんの少し工夫(工夫の方法は汎用的なものです)を加えることで、DAUを現場の肌感覚にもあう指標に変身させる方法、特に、運営期間が長くなったサービスにおける課題抽出に活用する方法をご紹介します。 発表日時 : 2013年8月23日(金) 16:30~17:30 詳細URL : http://cedec.cesa.or.jp/201
googleさんやマイクロソフトさんは「次の10年で熱い職業は統計学」と言っているようです。またIBMは分析ができる人材を4,000人増やすと言っています(同記事)。しかし分析をするときの基礎的な学問は統計学ですが、いざ統計学を勉強しようとしてもどこから取りかかればいいか分からなかくて困るという話をよく聞きます。それに機械学習系の本は最近増えてきましたが、統計学自体が基礎から学べる本はまだあまり見かけないです。 そこで今回は、統計学を初めて勉強するときに知っておいた方が良い10ポイントを紹介したいと思います。 1. 同じ手法なのに違う呼び名が付いている 別の人が違う分野で提案した手法が、実は全く同じだったということがあります。良く聞くのは、数量化理論や分散分析についてです。 数量化理論 数量化I類 = ダミー変数による線形回帰 数量化II類 = ダミー変数による判別分析 数量化III類 =
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く