This domain may be for sale!
An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. The deep learning textbook can now be ordered on Amazon. For up to date an
2. Copyright (C) DeNA Co.,Ltd. All Rights Reserved. ⾃⼰紹介 n 藤川和樹 ⁃ 所属 • DeNA システム本部 分析推進部 分析基盤グループ ⁃ 2014.4 新卒でDeNAへ⼊社(3年⽬) • これまでの主な業務内容 ⁃ ソーシャルゲームの各種課題分析、それに伴うデータ基盤の整備 ⁃ mobageプラットフォーム・キュレーションサービスにおける パーソナライズ・レコメンドシステムの開発 ⁃ mobageプラットフォーム上における対話型⼈⼯知能システムの開発 n 経歴 ⁃ 2014.3 神⼾⼤学⼤学院 システム情報⼯学研究科 修了 • 研究分野 ⁃ 深層学習、⾃然⾔語処理 • テーマ ⁃ 深層学習による複数⽂書の圧縮表現の獲得と株価動向推定への応⽤
Dive into deep learning with this practical course on TensorFlow and the Keras API. Gain an intuitive understanding of neural networks without the dense jargon. Learn to build, train, and optimize your own networks using TensorFlow. The course also introduces transfer learning, leveraging pre-trained models for enhanced performance. Designed for swift proficiency, this course prioritizes hands-on
(from Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.) Microsoft (Deep Residual Learning) [Paper][Slide] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385. Microsoft (PReLu/Weight Initialization) [Paper] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,
前回、おそ松さんたちをディープラーニングで見分けるため、準備編としておそ松さんたちの顔画像を5644枚集めました。 今回はそれを用いて、ディープラーニングで学習させ、判別器を作って検証します。 集めた画像 人物 枚数 例 おそ松 1126 から松 769 チョロ松 1047 一松 736 十四松 855 とど松 729 その他 383 使用フレームワーク 最近GoogleからTensorFlowという新しいディープラーニングのフレームワークが発表されました。 会社のブログに使い方書いたのですが、まだ慣れていないので、今回はchainerを使います。こちらだとすぐに高い成果を上げているImageNetのNINモデル、4層畳み込みニューラルネットワークがサンプルで入っていますので、こちらを改良して使います。 imageNetの使い方は、こちらやこちらを参考にしています。 訓練データセット Im
TensorFlowとは2015/11/9にオープンソース化されたGoogleの機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macのPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました
Deep Neural Networkを使って画像を好きな画風に変換できるプログラムをChainerで実装し、公開しました。 https://github.com/mattya/chainer-gogh こんにちは、PFNリサーチャーの松元です。ブログの1行目はbotに持って行かれやすいので、3行目で挨拶してみました。 今回実装したのは”A Neural Algorithm of Artistic Style”(元論文)というアルゴリズムです。生成される画像の美しさと、画像認識のタスクで予め訓練したニューラルネットをそのまま流用できるというお手軽さから、世界中で話題になっています。このアルゴリズムの仕組みなどを説明したいと思います。 概要 2枚の画像を入力します。片方を「コンテンツ画像」、もう片方を「スタイル画像」としましょう。 このプログラムは、コンテンツ画像に書かれた物体の配置をそのま
2. アジェンダ l IoT時代の深層学習 – RNN – VAE – 深層強化学習 l PFNの取り組み – デモ:深層強化学習 + データ同化 + 転移学習 + 分散学習 – DiMO : Edge Heavy 分散ストリーム処理理プラットフォーム – Chainer : 新しい深層学習フレームワーク OSS 2 3. ディープラーニングとは l 層が深く、幅も広いニューラルネットワークを利利⽤用した 機械学習⼿手法 l 2012年年の⼤大ブレーク以来、研究コミュニティのみならず 産業界に多く使われてきた – 2014〜~2015年年中に出された関連論論⽂文数は1500を超える* l 画像認識識、⾳音声認識識などで劇的な精度度向上を果たし、その 多くが既に実⽤用化されている – Googleは47の⾃自社サービスで既に利利⽤
うまくできましたか? ボヤけたり、ギザギザになったりしませんでしたか? waifu2xをお試しください。 (ブラウザの処理に影響されないようクリックで拡大おねがいします) waifu2xは、二次元画像を2倍に拡大するソフトウェアです。多くの二次元画像についてスゴイ級のクオリティで拡大できます。 waifu2xは、最新鋭の人工知能技術 Deep Convolutional Neural Networks を使って開発されました。 waifu2xの人工知能は、次の問に答えます。 いまから与える画像はある画像を半分に縮小したものである。縮小される前の画像を求めよ。 画像を拡大するのではなく、縮小される前の状態に戻します。 縮小されてないオリジナル画像を与えた場合も、やはり縮小される前の画像を答えます。 その画像は本来存在しないものですが、waifu2xはそれを想像で創ります。 二次元画像のJPE
ニューラルネットワークと深層学習 What this book is about On the exercises and problems ニューラルネットワークを用いた手書き文字認識 逆伝播の仕組み ニューラルネットワークの学習の改善 ニューラルネットワークが任意の関数を表現できることの視覚的証明 ニューラルネットワークを訓練するのはなぜ難しいのか 深層学習 Appendix: 知性のある シンプルな アルゴリズムはあるか? Acknowledgements Frequently Asked Questions Sponsors Resources 「ニューラルネットワークと深層学習」は無料のオンライン書籍です。 この本では、次のような内容を扱います。 ニューラルネットワーク:コンピュータに、観測データにもとづいて学習する能力を与える、生物学にヒントを得たプログラミングパラダイム。 深
ディープラーニングが猛威を振るっています。私の周りでは昨年から多く聞かれるようになり、私も日経BPさんの連載で昨年5月にGoogleの買収したDeep Mind社について触れました。今年はさらに今までディープラーニングについて触れていなかったメディアでも触れられるようになってきましたね。例えば、イケダハヤトさんも先日。高知でも話題になっているのですね。 私事ですが、今度湯川鶴章さんのTheWaveという勉強会で、人工知能とビジネスについて一時間ほど登壇させていただくことになりました。有料セミナーということです。チャールズべバッジの解析機関についてはこのブログでも以前触れましたが、「機械が人間を置き換える」みたいな妄想は100年位は言われていることですね。「解析機関」「機械学習」「人工知能」「シンギュラリティー」など、呼び名はどんどん変わり、流行り廃りもありますが、最近ロボットの発達も相まっ
このところDeep Learningが相当流行っているようで、ほとんど至るところで話題になっているのを見ます。 Deep Learningは深層学習とも呼ばれ、ニューラルネットワークの層をこれまでより深くして機械学習を行う技法です(だそうです)。 画像認識コンテストで他の方法と比べて非常に高い精度を示しており、以前は人の手で行っていた特徴の抽出まで行えます。 以前であれば車を認識するには車はどのような特徴を持っているかを人がモデル化して入力していたわけですが、この特徴を入力画像と与えられたラベルからニューラルネットワークが捉えてくれます。詳しいことはDeep Learningで検索して出てくる記事やスライドを参照のこと。 Deep Learning自体は容易に実装可能なものではなさそうですが、多くの研究グループがDeep Learningを行うためのソフトウェアをオープンソースにしているた
Introduction Approximately 25 years of experience Passionate about data privacy and censorship resistance Lead a team of ~30 engineers from hiring to delivering the product to the first customer. Worked in following projects / companies Ethereum Foundation ( worked on Swarm when it was part of Ethereum geth code) Swarm Foundation Prysmatic Labs (worked on PoS Merge) Shardeum Foundation (worked on
人工知能。何十年も前からある言葉だ。国家プロジェクトとして研究されていた時期もあった。それでも完成しなかった。やはり人間の脳は複雑で、それをコンピューターで真似することなど不可能かもしれない。 人工知能。何十年も前からある言葉だ。国家プロジェクトとして研究されていた時期もあった。それでも完成しなかった。やはり人間の脳は複雑で、それをコンピューターで真似することなど不可能かもしれない。 「ところがブレークスルーが起こったんです」と東京大学の松尾豊准教授は熱く語る。 ▶2012年。人工知能研究に火がついた 2012年。人工知能の精度を競う国際的な大会で、カナダのトロント大学がぶっち切りの勝利を収めた。それも1つの大会だけではなく、3つ続けてだ。 「優勝したのは、画像認識、化合物の活性予測、音声認識など3つのコンペティション。まったく異なる領域にも関わらず、今までその分野を専門的に研究していた人
1. Nakayama Lab. Machine Perception Group The University of Tokyo 東京大学 大学院情報理工学系研究科 創造情報学専攻 中山研究室 中山 英樹 2. Nakayama Lab. Machine Perception Group The University of Tokyo 1.Deep learning(深層学習)とは? 2.一般画像認識:Deep learning 以前と以後で何が変わったか ◦ Bag-of-visual-words (VLAD, Fisher Vector) ◦ Convolutional neural network (ConvNets) 3.Deep learningの数理 ◦ なぜ優れた性能が実現できるのか? ◦ ブレークスルーを生んだ各要素技術 ◦ 中山研究室での研究紹介 4.実
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く