login
Search: a254338 -id:a254338
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).
(Formerly M1576)
+10
40
1, 2, 6, 10, 19, 28, 44, 60, 85, 110, 146, 182, 231, 280, 344, 408, 489, 570, 670, 770, 891, 1012, 1156, 1300, 1469, 1638, 1834, 2030, 2255, 2480, 2736, 2992, 3281, 3570, 3894, 4218, 4579, 4940, 5340, 5740, 6181, 6622, 7106, 7590, 8119, 8648, 9224, 9800
OFFSET
0,2
COMMENTS
Alkane (or paraffin) numbers l(6,n).
Dimension of the space of homogeneous degree n polynomials in (x1, y1, x2, y2) invariant under permutation of variables x1<->y1, x2<->y2.
Also multidigraphs with loops on 2 nodes with n arcs (see A138107). - Vladeta Jovovic, Dec 27 1999
Euler transform of finite sequence [2,3,0,-1]. - Michael Somos, Mar 17 2004
a(n-2) is the number of plane partitions with trace 2. - Michael Somos, Mar 17 2004
With offset 4, a(n) is the number of bracelets with n beads, 3 of which are red, 1 of which is blue. For odd n, a(n) = C(n-1,3)/2. For even n, a(n) = C(n-1,3)/2 +(n-2)/4. For n >= 6, with K = (n-1)(n-2)/((n-5)(n-4)), for odd n, a(n) = K*a(n-2). For even n, a(n) = K*a(n-2) -(n-2)/(n-5). - Washington Bomfim, Aug 05 2008
Equals (1,2,3,4,...) convolved with (1,0,3,0,5,...). - Gary W. Adamson, Feb 16 2009
Equals row sums of triangle A177878.
Equals (1/2)*((1, 4, 10, 20, 35, 56, ...) + (1, 0, 2 0, 3, 0, 4, ...)).
From Ctibor O. Zizka, Nov 21 2014: (Start)
With offset 4, a(n) is the number of different patterns of the 2-color 4-partition of n.
P(n)_(k;t) gives the number of different patterns of the t-color, k-partition of n.
P(n)_(k;t) = 1 + Sum(i=2..n) Sum(j=2..i) Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
P(n;i;j) = Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
m partition number of i.
c_(i,j) number of different coloring patterns on the r-th form (X_1,...,X_i) of i-partition with j-colors.
v_r number of i-partitions of n of the r-th form (X_1,...,X_i).
F_r(X_1,...,X_i) number of different patterns of the r-th form i-partition of n.
Some simple results:
P(1)_(k;t)=1, P(2)_(k;t)=2, P(3)_(k;t)=4, P(4)_(k;t)=11, etc.
P(n;1;1) = P(n;n;n) = 1 for all n;
P(n;2;2) = floor(n/2) (A004526);
P(n;3;2) = (n*n - 2*n + n mod 2)/4 (A002620).
This sequence is a(n) = P(n;4;2).
2-coloring of 4-partition is (A,B,A,B) or (B,A,B,A).
Each 4-partition of n has one of the form (X_1,X_1,X_1,X_1),(X_1,X_1,X_1,X_2), (X_1,X_1,X_2,X_2),(X_1,X_1,X_2,X_3),(X_1,X_2,X_3,X_4).
The number of forms is m=5 which is the partition number of k=4.
Partition form (X_1,X_1,X_1,X_1) gives 1 pattern ((X_1A,X_1B,X_1A,X_1B), (X_1,X_1,X_1,X_2) gives 2 patterns, (X_1,X_1,X_2,X_2) gives 4 patterns, (X_1,X_1,X_2,X_3) gives 6 patterns and (X_1,X_2,X_3,X_4) gives 12 patterns.
Thus
a(n) = P(n;4;2) = 1*1*v_1 + 1*2*v_2 + 1*4*v_3 + 1*6*v_4 + 1*12*v_5
where v_r is the number of different 4-partitions of the r-th form (X_1,X_2,X_3,X_4) for a given n.
Example:
The 4-partitions of 8 are (2,2,2,2), (1,1,1,5), (1,1,3,3), (1,1,2,4), and (1,2,2,3):
(2,2,2,2) 1 pattern
(1,1,1,5), (1,1,5,1) 2 patterns
(1,1,3,3), (1,3,3,1), (3,1,1,3), (1,3,1,3) 4 patterns
(1,1,2,4), (1,1,4,2), (1,2,1,4), (1,2,4,1), (1,4,1,2), (2,1,1,4) 6 patterns
(2,2,1,3), (2,2,3,1), (2,1,2,3), (2,1,3,2), (2,3,2,1), (1,2,2,3) 6 patterns
Thus a(8) = P(8,4,2) = 1 + 2 + 4 + 6 + 6 = 19.
(End)
a(n) = length of run n+2 of consecutive 1's in A254338. - Reinhard Zumkeller, Feb 27 2015
Take a chessboard of (n+2) X (n+2) unit squares in which the a1 square is black. a(n) is the number of composite squares having black unit squares on their vertices. - Ivan N. Ianakiev, Jul 19 2018
a(n) is the number of 1423-avoiding odd Grassmannian permutations of size n+2. Avoiding any of the patterns 2314 or 3412 gives the same sequence. - Juan B. Gil, Mar 09 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 96.
LINKS
M. Benoumhani, M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, Lemma 6 3rd line.
T. M. Brown, On the unimodality of convolutions of sequences of binomial coefficients, arXiv:1810.08235 [math.CO] (2018).
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
Dragomir Z. Djokovic, Poincaré series of some pure and mixed trace algebras of two generic matrices, arXiv:math/0609262 [math.AC], 2006. See Table 8.
Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
Naihuan Jing, Kailash Misra, Carla Savage, On multi-color partitions and the generalized Rogers-Ramanujan identities, arXiv:math/9907183 [math.CO], 1999.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
N. J. A. Sloane, Classic Sequences
L. Smith, Polynomial invariants of finite groups. A survey of recent developments. Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 3, 211-250. See page 218. MR1433171 (98i:13009).
FORMULA
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (1+x^2)/((1-x)^2*(1-x^2)^2) = (1+x^2)/((1+x)^2*(x-1)^4) = (1/(1-x)^4 +1/(1-x^2)^2)/2.
a(2n) = (n+1)(2n^2+4n+3)/3, a(2n+1) = (n+1)(n+2)(2n+3)/3. a(-4-n) = -a(n).
From Yosu Yurramendi, Sep 12 2008: (Start)
a(n+1) = a(n) + A008794(n+3) with a(1)=1.
a(n) = A027656(n) + 2*A006918(n).
a(n+2) = a(n) + A000982(n+2) with a(1)=1, a(2)=2. (End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = (n^3 + 6*n^2 + 11*n + 6)/12 + ((n+2)/4)[n even] (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012
a(n) = (1/12)*n*(n+1)*(n+2) + (1/4)*(n+1)*(1/2)*(1-(-1)^n), with offset 1. - Yosu Yurramendi, Jun 20 2013
a(n) = Sum_{i=0..n+1} ceiling(i/2) * round(i/2) = Sum_{i=0..n+2} floor(i/2)^2. - Bruno Berselli, Aug 30 2013
a(n) = (n + 2)*(3*(-1)^n + 2*n^2 + 8*n + 9)/24. - Ilya Gutkovskiy, May 04 2016
Recurrence formula: a(n) = ((n+2)*a(n-2)+2*a(n-1)-n)/(n-2), a(1)=1, a(2)=2. - Gerry Martens, Jun 10 2018
E.g.f.: exp(-x)*(6 - 3*x + exp(2*x)*(18 + 39*x + 18*x^2 + 2*x^3))/24. - Stefano Spezia, Feb 23 2020
a(n) = Sum_{j=0..n/2} binomial(c+2*j-1,2*j)*binomial(c+n-2*j-1,n-2*j) where c=2. For other values of c we have: A008619 (c=1), A005995 (c=3), A018211 (c=4), A018213 (c=5), A062136 (c=6). - Miquel A. Fiol, Sep 24 2024
EXAMPLE
a(2) = 6, since ( x1*y1, x2*y2, x1*x1+y1*y1, x2*x2+y2*y2, x1*x2+y1*y2, x1*y2+x2*y1 ) are a basis for homogeneous quadratic invariant polynomials.
MAPLE
g := proc(n) local i; add(floor(i/2)^2, i=1..n+1) end: # Joseph S. Riel (joer(AT)k-online.com), Mar 22 2002
a:= n-> (Matrix([[1, 0$3, -1, -2]]).Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1, 1]; seq (a(n), n=0..44); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^2)^2), {x, 0, 44}], x] (* Jean-François Alcover, Apr 08 2011 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 2, 6, 10, 19, 28}, 50] (* Harvey P. Dale, Feb 20 2012 *)
PROG
(Haskell) Following Gary W. Adamson.
import Data.List (inits, intersperse)
a005993 n = a005994_list !! n
a005993_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
tail $ inits [1..]
-- Reinhard Zumkeller, Feb 27 2015
(Magma) I:=[1, 2, 6, 10, 19, 28]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-2)-4*Self(n-3)+Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
(PARI) a(n)=polcoeff((1+x^2)/(1-x)^2/(1-x^2)^2+x*O(x^n), n)
(PARI) a(n) = (binomial(n+3, n) + (1-n%2)*binomial((n+2)/2, n>>1))/2 \\ Washington Bomfim, Aug 05 2008
(PARI) a = vector(50); a[1]=1; a[2]=2;
for(n=3, 50, a[n] = ((n+2)*a[n-2]+2*a[n-1]-n)/(n-2)); a \\ Gerry Martens, Jun 03 2018
(Sage)
def A005993():
a, b, to_be = 0, 0, True
while True:
yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+6)//6
if to_be: b += 1
else: a += 1
to_be = not to_be
a = A005993()
[next(a) for _ in range(48)] # Peter Luschny, May 04 2016
CROSSREFS
Cf. A177878.
Partial sums of A008794 (without 0). - Bruno Berselli, Aug 30 2013
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved
1 appears three times, other numbers twice.
+10
24
1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35
OFFSET
0,4
COMMENTS
Gives the number of terms in n-th row of many common tables.
Number of partitions of the (n+1)-th Fibonacci number into distinct Fibonacci numbers: a(n) = A000119(A000045(n)), see also A098641. - Reinhard Zumkeller, Apr 24 2005
a(n) = length of run n+1 of consecutive 4s in A254338. - Reinhard Zumkeller, Feb 27 2015
This is the Engel expansion of A070910 + A096789. - Benedict W. J. Irwin, Dec 16 2016
FORMULA
a(0)=a(1)=a(2)=1, a(3)=2, a(n) = a(n-1)+a(n-2)-a(n-3) for n>3 . G.f.: (1-x^2+x^3)/(1-x-x^2+x^3). - Philippe Deléham, Sep 28 2006
a(n) = floor((n+1)/2) + 0^n. - Reinhard Zumkeller, Feb 27 2015
MATHEMATICA
Array[Floor[#/2] &, 61] /. 0 -> 1 (* Michael De Vlieger, Mar 10 2020 *)
PROG
(PARI) a(n) = { if (n<1, n==0, (n+1)\2) } \\ Harry J. Smith, Oct 03 2009
(Haskell)
a065033 n = 0 ^ n + div (n + 1) 2 -- Reinhard Zumkeller, Feb 27 2015
CROSSREFS
Cf. A254338.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 04 2001
STATUS
approved
Alkane (or paraffin) numbers l(7,n).
(Formerly M2774)
+10
9
1, 3, 9, 19, 38, 66, 110, 170, 255, 365, 511, 693, 924, 1204, 1548, 1956, 2445, 3015, 3685, 4455, 5346, 6358, 7514, 8814, 10283, 11921, 13755, 15785, 18040, 20520, 23256, 26248, 29529, 33099, 36993, 41211, 45790, 50730, 56070, 61810, 67991
OFFSET
0,2
COMMENTS
Equals A000217 (1, 3, 6, 10, 15, ...) convolved with A193356 (1, 0, 3, 0, 5, ...). - Gary W. Adamson, Feb 16 2009
F(1,4,n) is the number of bracelets with 1 blue, 4 red and n black beads. If F(1,4,1)=3 and F(1,4,2)=9 taken as a base;
F(1,4,n) = n(n+1)(n+2)/6+F(1,2,n) + F(1,4,n-2). [F(1,2,n) is the number of bracelets with 1 blue, 2 red and n black beads. If F(1,2,1)=2 and F(1,2,2)=4 taken as a base F(1,2,n)=n+1+F(1,2,n-2)]. - Ata Aydin Uslu and Hamdi G. Ozmenekse, Jan 11 2012
a(A254338(n)) = 6 for n > 0. - Reinhard Zumkeller, Feb 27 2015
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
N. J. A. Sloane, Classic Sequences
FORMULA
G.f.: (1+x^2)/((1-x)^3*(1-x^2)^2) = (1+x^2)/((1-x)^5*(1+x)^2).
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(-5-n)=a(n). - Michael Somos, Mar 08 2007
Euler transform of length 4 sequence [3, 3, 0, -1]. - Michael Somos, Mar 08 2007
a(n) = 3a(n-1) - a(n-2) - 5a(n-3) + 5a(n-4) + a(n-5) - 3a(n-6) + a(n-7), with a(0)=1, a(1)=3, a(2)=9, a(4)=19, a(5)=38, a(6)=66, a(7)=110. - Harvey P. Dale, May 02 2011
a(n) = A006009(n)/2 - A000332(n+4) = ((1/2)*Sum_{i=1..n+1} (i+1)*floor((i+1)^2/2)) - binomial(n+4,4). - Enrique Pérez Herrero, May 11 2012
a(n) = (1/48)*(n+1)*(n+3)*((n+2)*(n+4)+3)+1/32*(2*n+5)*(1+(-1)^n). - Yosu Yurramendi, Jun 20 2013
Conjecture: a(n)+a(n+1) = A203286(n+1). - R. J. Mathar, Mar 08 2025
MAPLE
a:= n -> (Matrix([[1, 0$4, 1, 3]]). Matrix(7, (i, j)-> if (i=j-1) then 1 elif j=1 then [3, -1, -5, 5, 1, -3, 1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=0..40); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {1, 3, 9, 19, 38, 66, 110}, 50] (* or *) CoefficientList[Series[(1+x^2)/((1-x)^3(1-x^2)^2), {x, 0, 50}], x] (* Harvey P. Dale, May 02 2011 *)
nn=45; With[{a=Accumulate[Range[nn]], b=Riffle[Range[1, nn, 2], 0]}, Flatten[ Table[ListConvolve[Take[a, n], Take[b, n]], {n, nn}]]] (* Harvey P. Dale, Nov 11 2011 *)
PROG
(PARI) {a(n)=if(n<-4, n=-5-n); polcoeff( (1+x^2)/((1-x)^3*(1-x^2)^2)+x*O(x^n), n)} /* Michael Somos, Mar 08 2007 */
(Haskell) -- Following Gary W. Adamson.
import Data.List (inits, intersperse)
a005994 n = a005994_list !! n
a005994_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
tail $ inits $ tail a000217_list
-- Reinhard Zumkeller, Feb 27 2015
CROSSREFS
Cf. A006009, A005997, A005993 (first differences).
KEYWORD
nonn,easy,nice,changed
AUTHOR
N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved
Products of any two not necessarily distinct terms of A237424.
+10
6
1, 4, 7, 16, 28, 34, 37, 49, 67, 136, 148, 238, 259, 268, 334, 337, 367, 469, 667, 1156, 1258, 1336, 1348, 1369, 1468, 2278, 2338, 2359, 2479, 2569, 2668, 3334, 3337, 3367, 3667, 4489, 4669, 6667, 11356, 11458, 12358, 12469, 12478, 13336, 13348, 13468, 13579
OFFSET
1,2
COMMENTS
Digits are in nondecreasing order for all terms in decimal representation;
a(396) = 1123456789 = 3367 * 333667 is the smallest term containing all nonzero decimal digits: A254323(396) = 123456789;
A254323(n) = A137564(a(n)).
EXAMPLE
Initial terms of A237424: 1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334 ...
. n | a(n) = A237424(i) * A237424(j)
. ---+-------------------------------
. 1 | 1 = 1 * 1 = A237424(1)^2
. 2 | 4 = 1 * 4 = A237424(1) * A237424(2)
. 3 | 7 = 1 * 7 = A237424(1) * A237424(3)
. 4 | 16 = 4 * 4 = A237424(2)^2
. 5 | 28 = 4 * 7 = A237424(2) * A237424(3)
. 6 | 34 = 1 * 34 = A237424(1) * A237424(4)
. 7 | 37 = 4 * 37 = A237424(1) * A237424(5)
. 8 | 49 = 7 * 7 = A237424(3)^2
. 9 | 67 = 1 * 67 = A237424(1) * A237424(6)
. 10 | 136 = 4 * 34 = A237424(2) * A237424(4)
. 11 | 148 = 4 * 37 = A237424(2) * A237424(5)
. 12 | 238 = 7 * 34 = A237424(3) * A237424(4)
. 13 | 259 = 7 * 37 = A237424(3) * A237424(5)
. 14 | 268 = 4 * 67 = A237424(2) * A237424(6)
. 15 | 334 = 1 * 334 = A237424(1) * A237424(7)
. 16 | 337 = 1 * 337 = A237424(1) * A237424(8)
. 17 | 367 = 1 * 367 = A237424(1) * A237424(9)
. 18 | 469 = 7 * 67 = A237424(3) * A237424(6)
. 19 | 667 = 1 * 34 = A237424(1) * A237424(10)
. 20 | 1156 = 34 * 34 = A237424(4)^2
see link for more.
PROG
(Haskell)
import Data.Set (empty, fromList, deleteFindMin, union)
import qualified Data.Set as Set (null)
a254143 n = a254143_list !! (n-1)
a254143_list = f a237424_list [] empty where
f xs'@(x:xs) zs s
| Set.null s || x < y = f xs zs' (union s $ fromList $ map (* x) zs')
| otherwise = y : f xs' zs s'
where zs' = x : zs
(y, s') = deleteFindMin s
(PARI) listA237424(lim)=my(v=List(), a, t); while(1, for(b=0, a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
list(lim)=my(v=List(), u=listA237424(lim), t); for(i=1, #u, for(j=1, i, t=u[i]*u[j]; if(t>lim, break); listput(v, t))); Set(v) \\ Charles R Greathouse IV, May 13 2015
CROSSREFS
Subsequence of A009994.
Cf. A237424, A254323, A137564, A254338 (initial digits), A254339 (final digits).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 28 2015
STATUS
approved
Final digits of A254143 in decimal representation.
+10
6
1, 4, 7, 6, 8, 4, 7, 9, 7, 6, 8, 8, 9, 8, 4, 7, 7, 9, 7, 6, 8, 6, 8, 9, 8, 8, 8, 9, 9, 9, 8, 4, 7, 7, 7, 9, 9, 7, 6, 8, 8, 9, 8, 6, 8, 8, 9, 8, 8, 9, 8, 8, 9, 9, 9, 9, 9, 8, 4, 7, 7, 7, 7, 9, 9, 7, 6, 8, 6, 8, 9, 8, 8, 8, 9, 9, 9, 8, 6, 8, 8, 8, 9, 9, 8, 8
OFFSET
1,2
COMMENTS
a(n) = A254143(n) mod 10;
also final digits of A254323: a(n) = A254323(n) mod 10.
PROG
(Haskell)
a254339 = flip mod 10 . a254143
(PARI) listA237424(lim)=my(v=List(), a, t); while(1, for(b=0, a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
do(lim)=my(v=List(), u=listA237424(lim), t); for(i=1, #u, for(j=1, i, t=u[i]*u[j]; if(t>lim, break); listput(v, t))); apply(n->n%10, Set(v)) \\ Charles R Greathouse IV, May 13 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Feb 23 2015
STATUS
approved
Remove in decimal representation of A254143(n) all repeated digits.
+10
4
1, 4, 7, 16, 28, 34, 37, 49, 67, 136, 148, 238, 259, 268, 34, 37, 367, 469, 67, 156, 1258, 136, 1348, 1369, 1468, 278, 238, 2359, 2479, 2569, 268, 34, 37, 367, 367, 489, 469, 67, 1356, 1458, 12358, 12469, 12478, 136, 1348, 13468, 13579, 1468, 2378, 2579
OFFSET
1,2
COMMENTS
a(n) <= 123456789 for all n, and a(n) < 123456789 for n < 396;
a(396) = 123456789 = A050289(1);
LINKS
PROG
(Haskell)
a254323 = a137564 . a254143
CROSSREFS
Cf. A254338 (initial digits), A254339 (final digits).
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Jan 28 2015
STATUS
approved
Initial digits of A237424 in decimal representation.
+10
2
1, 4, 7, 3, 3, 6, 3, 3, 3, 6, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3
OFFSET
1,2
COMMENTS
a(n) = A000030(A237424(n));
n with a(n) = 3: A237424(n) = (10^a+10^b+1)/3 with 0 <= b < a, see also A014132;
n with a(n) = 6: A237424(n) = (10^a+10^b+1)/3 with a = b, see also A199682, A254338;
length of k-th run of consecutive 3s = k+1, k > 0;
digits 0, 2, 5, 8 and 9 do not occur.
LINKS
PROG
(Haskell)
a254397 = a000030 . a237424
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Feb 23 2015
STATUS
approved

Search completed in 0.011 seconds