login
Search: a180665 -id:a180665
     Sort: relevance | references | number | modified | created      Format: long | short | data
The Golden Triangle: T(n,k) = A001654(k) for n>=0 and 0<=k<=n.
+10
144
0, 0, 1, 0, 1, 2, 0, 1, 2, 6, 0, 1, 2, 6, 15, 0, 1, 2, 6, 15, 40, 0, 1, 2, 6, 15, 40, 104, 0, 1, 2, 6, 15, 40, 104, 273, 0, 1, 2, 6, 15, 40, 104, 273, 714, 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895
OFFSET
0,6
COMMENTS
The terms in the n-th row of the Golden Triangle are the first (n+1) golden rectangle numbers. The golden rectangle numbers are A001654(n)=F(n)*F(n+1), with F(n) the Fibonacci numbers. The mirror image of the Golden Triangle is A180663.
We define below 24 mostly new triangle sums. The Row1 and Row2 sums are the ordinary and alternating row sums respectively and the Kn11 and Kn12 sums are commonly known as antidiagonal sums. Each of the names of these sums, except for the row sums, comes from a (fairy) chess piece that moves in its own peculiar way over a chessboard, see Hooper and Whyld. All pieces are leapers: knight (sqrt(5) or 1,2), fil (sqrt(8) or 2,2), camel (sqrt(10) or 3,1), giraffe (sqrt(17) or 4,1) and zebra (sqrt(13) or 3,2). Information about the origin of these chess sums can be found in "Famous numbers on a chessboard", see Meijer.
Each triangle or chess sum formula adds up numbers on a chessboard using the moves of its namesake. Converting a number triangle to a square array of numbers shows this most clearly (use the table button!). The formulas given below are for number triangles.
The chess sums of the Golden Triangle lead to six different sequences, see the crossrefs. As could be expected all these sums are related to the golden rectangle numbers.
Some triangles with complete sets of triangle sums are: A002260 (Natural Numbers), A007318 (Pascal), A008288 (Delannoy) A013609 (Pell-Jacobsthal), A036561 (Nicomachus), A104763 (Fibonacci(n)), A158405 (Odd Numbers) and of course A180662 (Golden Triangle).
#..Name....Type..Code....Definition of triangle sums.
1. Row......1....Row1.. a(n) = Sum_{k=0..n} T(n, k).
2. Row Alt..2....Row2.. a(n) = Sum_{k=0..n} (-1)^(n+k)*T(n, k).
3. Knight...1....Kn11.. a(n) = Sum_{k=0..floor(n/2)} T(n-k, k).
4. Knight...1....Kn12.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+1, k+1).
5. Knight...1....Kn13.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+2, k+2).
6. Knight...2....Kn21.. a(n) = Sum_{k=0..floor(n/2)} T(n-k, n-2*k).
7. Knight...2....Kn22.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+1, n-2*k).
8. Knight...2....Kn23.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+2, n-2*k).
9. Knight...3....Kn3... a(n) = Sum_{k=0..n} T(n+k, 2*k).
10. Knight...4....Kn4... a(n) = Sum_{k=0..n} T(n+k, n-k).
11. Fil......1....Fi1... a(n) = Sum_{k=0..floor(n/2)} T(n, 2*k).
12. Fil......2....Fi2... a(n) = Sum_{k=0..floor(n/2)} T(n, n-2*k).
13. Camel....1....Ca1... a(n) = Sum_{k=0..floor(n/3)} T(n-2*k, k).
14. Camel....2....Ca2... a(n) = Sum_{k=0..floor(n/3)} T(n-2*k, n-3*k).
15. Camel....3....Ca3... a(n) = Sum_{k=0..n} T(n+2*k, 3*k).
16. Camel....4....Ca4... a(n) = Sum_{k=0..n} T(n+2*k, n-k).
17. Giraffe..1....Gi1... a(n) = Sum_{k=0..floor(n/4)} T(n-3*k, k).
18. Giraffe..2....Gi2... a(n) = Sum_{k=0..floor(n/4)} T(n-3*k, n-4*k).
19. Giraffe..3....Gi3... a(n) = Sum_{k=0..n} T(n+3*k, 4*k).
20. Giraffe..4....Gi4... a(n) = Sum_{k=0..n} T(n+3*k, n-k).
21. Zebra....1....Ze1... a(n) = Sum_{k=0..floor(n/2)} T(n+k, 3*k).
22. Zebra....2....Ze2... a(n) = Sum_{k=0..floor(n/2)} T(n+k, n-2*k).
23. Zebra....3....Ze3... a(n) = Sum_{k=0..floor(n/3)} T(n-k, 2*k).
24. Zebra....4....Ze4... a(n) = Sum_{k=0..floor(n/3)} T(n-k, n-3*k).
REFERENCES
David Hooper and Kenneth Whyld, The Oxford Companion to Chess, p. 221, 1992.
LINKS
Verner E. Hoggatt, Jr., A new angle on Pascal’s triangle, The Fibonacci Quarterly, Vol. 6, Number 4, pp. 228-230, Oct. 1968.
Edouard Lucas, Recherches sur plusieurs ouvrages de Léonard de Pise, Ch. 1, pp. 12-14, 1877.
Johannes W. Meijer, Famous numbers on a chessboard, Acta Nova, Volume 4, No.4, December 2010; pp. 589-598.
Johannes W. Meijer, Illustrations of the triangle sums, Mar 07 2013.
S. Northshield, Sums across Pascal's triangle modulo 2, Congressus Numerantium, 200, pp. 35-52, 2010.
FORMULA
T(n, k) = F(k)*F(k+1) with F(n) = A000045(n), for n>=0 and 0<=k<=n.
From Johannes W. Meijer, Jun 22 2015: (Start)
Kn1p(n) = Sum_{k=0..floor(n/2)} T(n-k+p-1, k+p-1), p >= 1.
Kn1p(n) = Kn11(n+2*p-2) - Sum_{k=0..p-2} T(n-k+2*p-2, k), p >= 2.
Kn2p(n) = Sum_{k=0..floor(n/2)} T(n-k+p-1, n-2*k), p >= 1.
Kn2p(n) = Kn21(n+2*p-2) - Sum_{k=0..p-2} T(n+k+p, n+2*k+2), p >= 2. (End)
G.f. as triangle: xy/((1-x)(1+xy)(1-3xy+x^2 y^2)). - Robert Israel, Sep 06 2015
EXAMPLE
The first few rows of the Golden Triangle are:
0;
0, 1;
0, 1, 2;
0, 1, 2, 6;
0, 1, 2, 6, 15;
0, 1, 2, 6, 15, 40;
MAPLE
F:= combinat[fibonacci]:
T:= (n, k)-> F(k)*F(k+1):
seq(seq(T(n, k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012
MATHEMATICA
Table[Times @@ Fibonacci@ {k, k + 1}, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 18 2016 *)
Module[{nn=20, f}, f=Times@@@Partition[Fibonacci[Range[0, nn]], 2, 1]; Table[Take[f, n], {n, nn}]]//Flatten (* Harvey P. Dale, Nov 26 2022 *)
PROG
(Haskell)
import Data.List (inits)
a180662 n k = a180662_tabl !! n !! k
a180662_row n = a180662_tabl !! n
a180662_tabl = tail $ inits a001654_list
-- Reinhard Zumkeller, Jun 08 2013
(PARI) T(n, k)=fibonacci(k)*fibonacci(k+1) \\ Charles R Greathouse IV, Nov 07 2016
(Magma) [Fibonacci(k)*Fibonacci(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
(Sage) flatten([[fibonacci(k)*fibonacci(k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021
CROSSREFS
Cf. A180663 (Mirror), A001654 (Golden Rectangle), A000045 (F(n)).
Triangle sums: A064831 (Row1, Kn11, Kn12, Kn4, Ca1, Ca4, Gi1, Gi4), A077916 (Row2), A180664 (Kn13), A180665 (Kn21, Kn22, Kn23, Fi2, Ze2), A180665(2*n) (Kn3, Fi1, Ze3), A115730(n+1) (Ca2, Ze4), A115730(3*n+1) (Ca3, Ze1), A180666 (Gi2), A180666(4*n) (Gi3).
KEYWORD
easy,nonn,tabl
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved
Golden Triangle sums: a(n) = a(n-1) + A001654(n+1) with a(0)=0.
+10
8
0, 2, 8, 23, 63, 167, 440, 1154, 3024, 7919, 20735, 54287, 142128, 372098, 974168, 2550407, 6677055, 17480759, 45765224, 119814914, 313679520, 821223647, 2149991423, 5628750623, 14736260448, 38580030722, 101003831720
OFFSET
0,2
COMMENTS
The a(n+1) (terms doubled) are the Kn13 sums of the Golden Triangle A180662. See A180662 for information about these knight and other chess sums.
FORMULA
a(n+1) = Sum_{k=0..n} A180662(2*n-k+2, k+2).
a(n) = (-15 + (-1)^n + (6-2*A)*A^(-n-1) + (6-2*B)*B^(-n-1))/10 with A=(3+sqrt(5))/2 and B=(3-sqrt(5))/2.
G.f.: (2*x+2*x^2-x^3)/(1-3*x-x^4+3*x^3).
a(n) = Sum_{i=0..n-1} F(i+2)*F(i+3), where F(i) = A000045(i). - Rigoberto Florez, Jul 07 2020
a(n) = (1/10)*((-1)^n - 15 + 2*Lucas(2*n+4)). - G. C. Greubel, Jan 21 2022
MAPLE
nmax:=26: with(combinat): for n from 0 to nmax+1 do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax do a(n) := a(n-1)+A001654(n+1) od: seq(a(n), n=0..nmax);
MATHEMATICA
Table[Sum[Fibonacci[i+2]*Fibonacci[i+3], {i, 0, n-1}], {n, 0, 40}] (* Rigoberto Florez, Jul 07 2020 *)
LinearRecurrence[{3, 0, -3, 1}, {0, 2, 8, 23}, 30] (* Harvey P. Dale, Mar 30 2023 *)
PROG
(Magma) [(1/10)*((-1)^n - 15 + 2*Lucas(2*n+4)): n in [0..40]]; // G. C. Greubel, Jan 21 2022
(Sage) [(1/10)*((-1)^n - 15 + 2*lucas_number2(2*n+4, 1, -1)) for n in (0..40)] # G. C. Greubel, Jan 21 2022
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved
a(n) = a(n-3) + A001654(n-1) with a(0)=0, a(1)=0 and a(2)=1.
+10
6
0, 0, 1, 2, 6, 16, 42, 110, 289, 756, 1980, 5184, 13572, 35532, 93025, 243542, 637602, 1669264, 4370190, 11441306, 29953729, 78419880, 205305912, 537497856, 1407187656, 3684065112, 9645007681, 25250957930, 66107866110
OFFSET
0,4
COMMENTS
The a(n+1) represent the Ca2 and Ze4 sums of the Golden Triangle A180662. Furthermore the a(3*n) represent the Ze1 (terms doubled) and Ca3 sums of the Golden triangle. See A180662 for more information about these and other triangle sums.
FORMULA
a(n) = -floor(g(Fibonacci(n+1))) where g(x) = (1-x^2)^2/(-4*x^2).
G.f.: x^2/( (1-x)*(1+x)*(1+x+x^2)*(1-3*x+x^2) ). - R. J. Mathar, Jun 20 2015
a(n) - a(n-2) = A182890(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (1/60)*((-1)^n*(6 - 5*ChebyshevU(n, 1/2) + 10*ChebyshevU(n-1, 1/2)) - (10 - 9*ChebyshevU(n, 3/2) + 6*ChebyshevU(n-1, 3/2))). - G. C. Greubel, Jan 20 2022
a(n) = floor((2*Fibonacci(2*n+1) + Fibonacci(2*n+2) + 2)/20). - Michael Somos, Sep 05 2023
EXAMPLE
G.f. = x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 42*x^6 + 110*x^7 + 289*x^8 + ... - Michael Somos, Sep 05 2023
MAPLE
nmax:=31: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):=a(n-3) + A001654(n-1) od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{2, 2, 0, -2, -2, 1}, {0, 0, 1, 2, 6, 16}, 40] (* modified by G. C. Greubel, Jan 20 2022 *)
a[ n_] := Floor[(2*Fibonacci[2*n+1] + Fibonacci[2*n+2] + 2)/20]; (* Michael Somos, Sep 05 2023 *)
PROG
(Magma)
function A115730(n)
if n lt 3 then return Floor(n/2);
else return A115730(n-3) + Fibonacci(n-1)*Fibonacci(n);
end if; return A115730;
end function;
[A115730(n): n in [0..40]]; // G. C. Greubel, Jan 20 2022
(Sage)
U=chebyshev_U
def A115730(n): return (1/60)*((-1)^n*(6 - 5*U(n, 1/2) + 10*U(n-1, 1/2)) - (10 - 9*U(n, 3/2) + 6*U(n-1, 3/2)))
[A115730(n) for n in (0..40)] # G. C. Greubel, Jan 20 2022
(PARI) {a(n) = (2*fibonacci(2*n+1) + fibonacci(2*n+2) + 2)\20}; /* Michael Somos, Sep 05 2023 */
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 13 2006
EXTENSIONS
Corrected and information added by Johannes W. Meijer, Sep 22 2010
Edited by Editors-in-Chief. - N. J. A. Sloane, Jun 20 2015
STATUS
approved
Golden Triangle sums: a(n)=a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.
+10
6
0, 1, 2, 6, 15, 41, 106, 279, 729, 1911, 5001, 13095, 34281, 89752, 234971, 615165, 1610520, 4216400, 11038675, 28899630, 75660210, 198081006, 518582802, 1357667406, 3554419410, 9305590831, 24362353076, 63781468404
OFFSET
0,3
COMMENTS
The a(n) are the Gi2 sums of the Golden Triangle A180662. See A180662 for information about these giraffe and other chess sums.
FORMULA
a(n) = a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.
G.f.: (-x)/((x^2-3*x+1)*(x-1)*(x+1)^2*(x^2+1)).
a(n) = Sum_{k=0..floor(n/4)} A180662(n-3*k,n-4*k).
120*a(n) = 8*A001519(n) -10*A087960(n) -9*(-1)^n -15 -6*(n+1)*(-1)^n. - R. J. Mathar, Aug 18 2016
MAPLE
nmax:=27: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n)*fibonacci(n+1) od: a(0):=0: a(1):=1: a(2):=2: a(3):=6: for n from 4 to nmax do a(n):=a(n-4)+A001654(n) od: seq(a(n), n=0..nmax);
A180666 := proc(n)
option remember;
if n <=3 then
op(n+1, [0, 1, 2, 6]) ;
else
procname(n-4)+A001654(n) ;
end if;
end proc:
seq(A180666(n), n=0..100 ) ; # R. J. Mathar, Aug 18 2016
MATHEMATICA
Take[Total@{#, PadLeft[Drop[#, -4], Length@ #]}, Length@ # - 4] &@ Table[Times @@ Fibonacci@ {n, n + 1}, {n, 0, 31}] (* or *)
CoefficientList[Series[(-x)/((x^2 - 3 x + 1) (x - 1) (x + 1)^2 (x^2 + 1)), {x, 0, 27}], x] (* Michael De Vlieger, Aug 18 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved
Mirror image of the Golden Triangle: T(n,k) = A001654(n-k) for n>=0 and 0<=k<=n.
+10
2
0, 1, 0, 2, 1, 0, 6, 2, 1, 0, 15, 6, 2, 1, 0, 40, 15, 6, 2, 1, 0, 104, 40, 15, 6, 2, 1, 0, 273, 104, 40, 15, 6, 2, 1, 0, 714, 273, 104, 40, 15, 6, 2, 1, 0, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0, 4895, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0
OFFSET
0,4
COMMENTS
This triangle is the mirror image of the Golden Triangle A180662. The terms in the n-th row of the triangle are the first (n+1) golden rectangle numbers in reversed order. The golden rectangle numbers are A001654(n)=F(n)*F(n+1), with F(n) the Fibonacci numbers.
The chess sums, see A180662 for their definitions, mirror those of the Golden Triangle: Row1 & Row1; Row 2 & Row2; Kn1 and Kn2; Kn3 and Kn4; Fi1 and Fi2; Ca1 and Ca2; Ca3 and Ca4; Gi1 and Gi2; Gi3 and Gi4; Ze1 and Ze2; Ze3 and Ze4.
LINKS
FORMULA
T(n,k) = F(n-k)*F(n-k+1) with F(n) = A000045(n), for n>=0 and 0<=k<=n.
EXAMPLE
The first few rows of this triangle are:
0;
1, 0;
2, 1, 0;
6, 2, 1, 0;
15, 6, 2, 1, 0;
40, 15, 6, 2, 1, 0;
MAPLE
F:= combinat[fibonacci]:
T:= (n, k)-> F(n-k)*F(n-k+1):
seq(seq(T(n, k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012
MATHEMATICA
Module[{nn=20, fb}, fb=Times@@@Partition[Fibonacci[Range[0, (nn(nn+1))/2]], 2, 1]; Table[ Reverse[Take[fb, n]], {n, nn}]]//Flatten (* Harvey P. Dale, Jan 30 2023 *)
PROG
(Haskell)
a180663 n k = a180663_tabl !! n !! k
a180663_row n = a180663_tabl !! n
a180663_tabl = map reverse a180662_tabl
-- Reinhard Zumkeller, Jun 08 2013
CROSSREFS
Cf. A180662 (Golden Triangle), A001654 (Golden Rectangle numbers), A000045 (F(n)).
The triangle sums lead to: A064831 (Row1, Kn21, Kn22, Kn3, Ca2, Ca3, Gi2, Gi3), A077916 (Row2), A180664 (Kn23), A180665 (Kn11, Kn12, Kn13, Fi1, Ze1), A180665(2*n) (Kn4, Fi2, Ze4), A115730(n+1) (Ca1, Ze3), A115730(3*n+1) (Ca4, Ze2), A180666 (Gi1), A180666(4*n) (Gi4).
KEYWORD
easy,nonn,tabl
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved

Search completed in 0.008 seconds