login
Search: a138107 -id:a138107
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).
(Formerly M1576)
+10
40
1, 2, 6, 10, 19, 28, 44, 60, 85, 110, 146, 182, 231, 280, 344, 408, 489, 570, 670, 770, 891, 1012, 1156, 1300, 1469, 1638, 1834, 2030, 2255, 2480, 2736, 2992, 3281, 3570, 3894, 4218, 4579, 4940, 5340, 5740, 6181, 6622, 7106, 7590, 8119, 8648, 9224, 9800
OFFSET
0,2
COMMENTS
Alkane (or paraffin) numbers l(6,n).
Dimension of the space of homogeneous degree n polynomials in (x1, y1, x2, y2) invariant under permutation of variables x1<->y1, x2<->y2.
Also multidigraphs with loops on 2 nodes with n arcs (see A138107). - Vladeta Jovovic, Dec 27 1999
Euler transform of finite sequence [2,3,0,-1]. - Michael Somos, Mar 17 2004
a(n-2) is the number of plane partitions with trace 2. - Michael Somos, Mar 17 2004
With offset 4, a(n) is the number of bracelets with n beads, 3 of which are red, 1 of which is blue. For odd n, a(n) = C(n-1,3)/2. For even n, a(n) = C(n-1,3)/2 +(n-2)/4. For n >= 6, with K = (n-1)(n-2)/((n-5)(n-4)), for odd n, a(n) = K*a(n-2). For even n, a(n) = K*a(n-2) -(n-2)/(n-5). - Washington Bomfim, Aug 05 2008
Equals (1,2,3,4,...) convolved with (1,0,3,0,5,...). - Gary W. Adamson, Feb 16 2009
Equals row sums of triangle A177878.
Equals (1/2)*((1, 4, 10, 20, 35, 56, ...) + (1, 0, 2 0, 3, 0, 4, ...)).
From Ctibor O. Zizka, Nov 21 2014: (Start)
With offset 4, a(n) is the number of different patterns of the 2-color 4-partition of n.
P(n)_(k;t) gives the number of different patterns of the t-color, k-partition of n.
P(n)_(k;t) = 1 + Sum(i=2..n) Sum(j=2..i) Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
P(n;i;j) = Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
m partition number of i.
c_(i,j) number of different coloring patterns on the r-th form (X_1,...,X_i) of i-partition with j-colors.
v_r number of i-partitions of n of the r-th form (X_1,...,X_i).
F_r(X_1,...,X_i) number of different patterns of the r-th form i-partition of n.
Some simple results:
P(1)_(k;t)=1, P(2)_(k;t)=2, P(3)_(k;t)=4, P(4)_(k;t)=11, etc.
P(n;1;1) = P(n;n;n) = 1 for all n;
P(n;2;2) = floor(n/2) (A004526);
P(n;3;2) = (n*n - 2*n + n mod 2)/4 (A002620).
This sequence is a(n) = P(n;4;2).
2-coloring of 4-partition is (A,B,A,B) or (B,A,B,A).
Each 4-partition of n has one of the form (X_1,X_1,X_1,X_1),(X_1,X_1,X_1,X_2), (X_1,X_1,X_2,X_2),(X_1,X_1,X_2,X_3),(X_1,X_2,X_3,X_4).
The number of forms is m=5 which is the partition number of k=4.
Partition form (X_1,X_1,X_1,X_1) gives 1 pattern ((X_1A,X_1B,X_1A,X_1B), (X_1,X_1,X_1,X_2) gives 2 patterns, (X_1,X_1,X_2,X_2) gives 4 patterns, (X_1,X_1,X_2,X_3) gives 6 patterns and (X_1,X_2,X_3,X_4) gives 12 patterns.
Thus
a(n) = P(n;4;2) = 1*1*v_1 + 1*2*v_2 + 1*4*v_3 + 1*6*v_4 + 1*12*v_5
where v_r is the number of different 4-partitions of the r-th form (X_1,X_2,X_3,X_4) for a given n.
Example:
The 4-partitions of 8 are (2,2,2,2), (1,1,1,5), (1,1,3,3), (1,1,2,4), and (1,2,2,3):
(2,2,2,2) 1 pattern
(1,1,1,5), (1,1,5,1) 2 patterns
(1,1,3,3), (1,3,3,1), (3,1,1,3), (1,3,1,3) 4 patterns
(1,1,2,4), (1,1,4,2), (1,2,1,4), (1,2,4,1), (1,4,1,2), (2,1,1,4) 6 patterns
(2,2,1,3), (2,2,3,1), (2,1,2,3), (2,1,3,2), (2,3,2,1), (1,2,2,3) 6 patterns
Thus a(8) = P(8,4,2) = 1 + 2 + 4 + 6 + 6 = 19.
(End)
a(n) = length of run n+2 of consecutive 1's in A254338. - Reinhard Zumkeller, Feb 27 2015
Take a chessboard of (n+2) X (n+2) unit squares in which the a1 square is black. a(n) is the number of composite squares having black unit squares on their vertices. - Ivan N. Ianakiev, Jul 19 2018
a(n) is the number of 1423-avoiding odd Grassmannian permutations of size n+2. Avoiding any of the patterns 2314 or 3412 gives the same sequence. - Juan B. Gil, Mar 09 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 96.
LINKS
M. Benoumhani, M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, Lemma 6 3rd line.
T. M. Brown, On the unimodality of convolutions of sequences of binomial coefficients, arXiv:1810.08235 [math.CO] (2018).
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
Dragomir Z. Djokovic, Poincaré series of some pure and mixed trace algebras of two generic matrices, arXiv:math/0609262 [math.AC], 2006. See Table 8.
Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
Naihuan Jing, Kailash Misra, Carla Savage, On multi-color partitions and the generalized Rogers-Ramanujan identities, arXiv:math/9907183 [math.CO], 1999.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
N. J. A. Sloane, Classic Sequences
L. Smith, Polynomial invariants of finite groups. A survey of recent developments. Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 3, 211-250. See page 218. MR1433171 (98i:13009).
FORMULA
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (1+x^2)/((1-x)^2*(1-x^2)^2) = (1+x^2)/((1+x)^2*(x-1)^4) = (1/(1-x)^4 +1/(1-x^2)^2)/2.
a(2n) = (n+1)(2n^2+4n+3)/3, a(2n+1) = (n+1)(n+2)(2n+3)/3. a(-4-n) = -a(n).
From Yosu Yurramendi, Sep 12 2008: (Start)
a(n+1) = a(n) + A008794(n+3) with a(1)=1.
a(n) = A027656(n) + 2*A006918(n).
a(n+2) = a(n) + A000982(n+2) with a(1)=1, a(2)=2. (End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = (n^3 + 6*n^2 + 11*n + 6)/12 + ((n+2)/4)[n even] (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012
a(n) = (1/12)*n*(n+1)*(n+2) + (1/4)*(n+1)*(1/2)*(1-(-1)^n), with offset 1. - Yosu Yurramendi, Jun 20 2013
a(n) = Sum_{i=0..n+1} ceiling(i/2) * round(i/2) = Sum_{i=0..n+2} floor(i/2)^2. - Bruno Berselli, Aug 30 2013
a(n) = (n + 2)*(3*(-1)^n + 2*n^2 + 8*n + 9)/24. - Ilya Gutkovskiy, May 04 2016
Recurrence formula: a(n) = ((n+2)*a(n-2)+2*a(n-1)-n)/(n-2), a(1)=1, a(2)=2. - Gerry Martens, Jun 10 2018
E.g.f.: exp(-x)*(6 - 3*x + exp(2*x)*(18 + 39*x + 18*x^2 + 2*x^3))/24. - Stefano Spezia, Feb 23 2020
a(n) = Sum_{j=0..n/2} binomial(c+2*j-1,2*j)*binomial(c+n-2*j-1,n-2*j) where c=2. For other values of c we have: A008619 (c=1), A005995 (c=3), A018211 (c=4), A018213 (c=5), A062136 (c=6). - Miquel A. Fiol, Sep 24 2024
EXAMPLE
a(2) = 6, since ( x1*y1, x2*y2, x1*x1+y1*y1, x2*x2+y2*y2, x1*x2+y1*y2, x1*y2+x2*y1 ) are a basis for homogeneous quadratic invariant polynomials.
MAPLE
g := proc(n) local i; add(floor(i/2)^2, i=1..n+1) end: # Joseph S. Riel (joer(AT)k-online.com), Mar 22 2002
a:= n-> (Matrix([[1, 0$3, -1, -2]]).Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1, 1]; seq (a(n), n=0..44); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^2)^2), {x, 0, 44}], x] (* Jean-François Alcover, Apr 08 2011 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 2, 6, 10, 19, 28}, 50] (* Harvey P. Dale, Feb 20 2012 *)
PROG
(Haskell) Following Gary W. Adamson.
import Data.List (inits, intersperse)
a005993 n = a005994_list !! n
a005993_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
tail $ inits [1..]
-- Reinhard Zumkeller, Feb 27 2015
(Magma) I:=[1, 2, 6, 10, 19, 28]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-2)-4*Self(n-3)+Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
(PARI) a(n)=polcoeff((1+x^2)/(1-x)^2/(1-x^2)^2+x*O(x^n), n)
(PARI) a(n) = (binomial(n+3, n) + (1-n%2)*binomial((n+2)/2, n>>1))/2 \\ Washington Bomfim, Aug 05 2008
(PARI) a = vector(50); a[1]=1; a[2]=2;
for(n=3, 50, a[n] = ((n+2)*a[n-2]+2*a[n-1]-n)/(n-2)); a \\ Gerry Martens, Jun 03 2018
(Sage)
def A005993():
a, b, to_be = 0, 0, True
while True:
yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+6)//6
if to_be: b += 1
else: a += 1
to_be = not to_be
a = A005993()
[next(a) for _ in range(48)] # Peter Luschny, May 04 2016
CROSSREFS
Cf. A177878.
Partial sums of A008794 (without 0). - Bruno Berselli, Aug 30 2013
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved
Number of directed multigraphs with loops on an infinite set of nodes containing a total of n arcs.
+10
9
1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187, 31412182, 257150093, 2188063401, 19299062896, 176059781439, 1657961491087, 16089088019098, 160643776819423, 1648068916722737, 17351137043998280, 187255329043638437, 2069426416836401375, 23397468305569068113, 270406562951254606048, 3191908298072118225550, 38454691427657997701136
OFFSET
0,2
COMMENTS
Row sums of A136564, limiting values of A138107. - Benoit Jubin, May 13 2008
Euler transform of A137975. - M. F. Hasler, Jul 31 2017
LINKS
Banglei Guan, Ji Zhao, and Laurent Kneip, Six-Point Method for Multi-Camera Systems with Reduced Solution Space, arXiv:2402.18066 [cs.CV], 2024. See p. 10.
J.-C. Novelli, J.-Y. Thibon and N. M. Thiery, Algèbres de Hopf de graphes, C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
Sanjaye Ramgoolam, Permutation Invariant Gaussian Matrix Models, arXiv:1809.07559 [hep-th], 2018.
FORMULA
a(n) = A138107(2*n,n). - Max Alekseyev, Oct 17 2017
CROSSREFS
Cf. A104209. Cf. A137975 (connected).
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jan 26 2000
EXTENSIONS
a(16)-a(25) from Max Alekseyev, Jun 21 2011
STATUS
approved
Array read by rows: T(n,k) is the number of directed multigraphs with loops with n arcs, k vertices, and no vertex of degree 0.
+10
7
1, 1, 1, 5, 4, 1, 1, 9, 21, 16, 4, 1, 1, 18, 71, 108, 71, 22, 4, 1, 1, 27, 194, 491, 557, 326, 101, 22, 4, 1, 1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1, 1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1, 1, 84, 2095, 18823, 72064
OFFSET
1,4
COMMENTS
Length of the n^th row: 2n.
FORMULA
T(n,1) = 1 if n > 0.
T(n,2n) = 1 if n > 0.
T(n,2n-1) = 4 if n >= 2.
T(n,2n-k) = A144047(k) for n large enough (conjecturally, n >= 2k is enough).
T(n,2) = (n^3 + 6*n^2 + 11*n - 6)/12 + ((n+2)/4)[n even]. (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012
EXAMPLE
1, 1;
1, 5, 4, 1;
1, 9, 21, 16, 4, 1;
1, 18, 71, 108, 71, 22, 4, 1;
1, 27, 194, 491, 557, 326, 101, 22, 4, 1;
1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1;
1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1;
CROSSREFS
Row sums: A052171. Partial row sums: A138107.
Sums of the first m entries of each row: A005993 (m=2), A050927 (m=3), A050929 (m=4).
KEYWORD
nonn,tabf
AUTHOR
Benoit Jubin, Apr 14 2008
EXTENSIONS
More terms from Benoit Jubin and Vladeta Jovovic, Sep 08 2008
STATUS
approved
Array read by antidiagonals: T(n,k) is the number of graphs with n edges and k vertices, allowing loops and multi-edges.
+10
7
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 4, 1, 0, 1, 2, 6, 6, 1, 0, 1, 2, 7, 14, 9, 1, 0, 1, 2, 7, 20, 28, 12, 1, 0, 1, 2, 7, 22, 53, 52, 16, 1, 0, 1, 2, 7, 23, 69, 125, 93, 20, 1, 0, 1, 2, 7, 23, 76, 198, 287, 152, 25, 1, 0, 1, 2, 7, 23, 78, 245, 550, 606, 242, 30, 1, 0
OFFSET
0,8
COMMENTS
Variant of A138107, here for non-directed edges.
LINKS
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017. See Table 59.
EXAMPLE
1 1 1 1 1 1 1 1 1...
0 1 2 2 2 2 2 2 2...
0 1 4 6 7 7 7 7 7...
0 1 6 14 20 22 23 23 23...
0 1 9 28 53 69 76 78 79...
0 1 12 52 125 198 245 264 271...
0 1 16 93 287 550 782 915 973...
0 1 20 152 606 1441 2392
0 1 25 242 1226 3611
MATHEMATICA
rows = 12;
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]] ]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c + 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
col[k_] := col[k] = Module[{s = O[x]^rows}, Do[s += permcount[p]*1/edges[p, 1 - x^# + O[x]^rows&], {p, IntegerPartitions[k]}]; s/k!] // CoefficientList[#, x]&;
T[0, _] = 1; T[_, 0] = 0;
T[n_, k_] := col[k][[n + 1]];
Table[T[n-k, k], {n, 0, rows-1}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
T(m, n=m) = {Mat(vector(n+1, n, my(s=O(x*x^m)); forpart(p=n-1, s+=permcount(p)*1/edges(p, i->1-x^i+O(x*x^m))); Col(s/(n-1)!)))}
{ my(A=T(8)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Oct 22 2019
CROSSREFS
Cf. A050531 (column 3), A050532 (column 4), A138107, A098568 (vertex-labeled).
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 31 2017
STATUS
approved
Triangle where the g.f. of column k is 1/(1-x)^(k^2) for k>=1, as read by rows n>=1.
+10
6
1, 1, 1, 1, 4, 1, 1, 10, 9, 1, 1, 20, 45, 16, 1, 1, 35, 165, 136, 25, 1, 1, 56, 495, 816, 325, 36, 1, 1, 84, 1287, 3876, 2925, 666, 49, 1, 1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1, 1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1, 1, 220, 12870, 170544
OFFSET
1,5
COMMENTS
This is also the array A(n,k) read upwards antidiagonals, where the entry in row n and column k counts the vertex-labeled digraphs with n arcs and k vertices, allowing multi-edges and multi-loops (labeled analog to A138107). The binomial formula counts the weak compositions of distributing n arcs over the k^2 positions in the adjacency matrix. - R. J. Mathar, Aug 03 2017
LINKS
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 (2017) Table 80.
FORMULA
T(n,k) = binomial(k^2+n-k-1, n-k).
Row sums form A178325.
Central terms form A214400.
T(n,n-2) = A037270(n-2). - R. J. Mathar, Aug 03 2017
T(n,n-3) = (n^2-6*n+11)*(n^2-6*n+10)*(n-3)^2 /6. - R. J. Mathar, Aug 03 2017
EXAMPLE
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1;
1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1;
1, 220, 12870, 170544, 593775, 658008, 270725, 45760, 3321, 100, 1; ...
MAPLE
A214398 := proc(n, k)
binomial(k^2+n-k-1, n-k) ;
end proc:
seq(seq(A214398(n, k), k=1..n), n=1..10) ; # R. J. Mathar, Aug 03 2017
MATHEMATICA
nmax = 11;
T[n_, k_] := SeriesCoefficient[1/(1-x)^(k^2), {x, 0, n-k}];
Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten
PROG
(PARI) T(n, k)=binomial(k^2+n-k-1, n-k)
for(n=1, 11, for(k=1, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A214400 (central terms), A178325 (row sums), A054688, A000290 (1st subdiagonal), A037270 (2nd subdiagonal).
Cf. A230049.
KEYWORD
nonn,tabl,easy
AUTHOR
Paul D. Hanna, Jul 15 2012
STATUS
approved
Number of directed multigraphs with loops on 3 nodes with n arcs.
+10
5
1, 2, 10, 31, 90, 222, 520, 1090, 2180, 4090, 7356, 12660, 21105, 34020, 53460, 81891, 122826, 180510, 260746, 370370, 518518, 715870, 976170, 1315470, 1753975, 2314936, 3027224, 3923845, 5044920, 6436200, 8152542, 10255896
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-8,3,19,4,-24,-15,15,24,-4,-19,-3,8,5,-3,-2,1).
FORMULA
G.f.: (x^10+3*x^8+10*x^7+16*x^6+12*x^5+16*x^4+10*x^3+3*x^2+1) / ((1-x^3)^3*(1-x^2)^4*(1-x)^2).
MATHEMATICA
<<Combinatorica`
nn=30; n=3; CoefficientList[Series[CycleIndex[Join[PairGroup[SymmetricGroup[n], Ordered], Permutations[Range[n*(n - 1) + 1, n*(n - 1) + n]], 2], s] /.Table[s[i] -> 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)
CoefficientList[Series[(x^10 + 3 x^8 + 10 x^7 + 16 x^6 + 12 x^5 + 16 x^4 + 10 x^3 + 3 x^2 + 1)/((1 - x^3)^3 (1 - x^2)^4 (1 - x)^2), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 08 2015 *)
PROG
(PARI) Vec((1 + 3*x^2 + 10*x^3 + 16*x^4 + 12*x^5 + 16*x^6 + 10*x^7 + 3*x^8 + x^10)/((1 - x)^2*(1 - x^2)^4*(1 - x^3)^3) + O(x^40)) \\ Andrew Howroyd, Mar 16 2020
CROSSREFS
Column k=3 of A138107.
Cf. A005993.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 30 1999
STATUS
approved
Number of directed multigraphs with loops on 4 nodes with n arcs.
+10
5
1, 2, 11, 47, 198, 713, 2423, 7388, 21003, 55433, 137944, 324659, 729022, 1567139, 3242954, 6479759, 12547894, 23607614, 43267994, 77405064, 135435666, 232137202, 390371944, 644897542, 1047890293, 1676518363, 2643628813
OFFSET
0,2
LINKS
FORMULA
G.f.: (x^26-x^25 + 4*x^24 + 18*x^23 + 63*x^22 + 151*x^21 + 402*x^20 + 790*x^19 + 1511*x^18 + 2353*x^17 + 3400*x^16 + 4296*x^15 + 5115*x^14 + 5266*x^13 + 5115*x^12 + 4296*x^11 + 3400*x^10 + 2353*x^9 + 1511*x^8 + 790*x^7 + 402*x^6 + 151*x^5 + 63*x^4 + 18*x^3 + 4*x^2-x + 1)/((x^4-1)^4*(x^3-1)^5*(x^2-1)^4*(x-1)^3).
MAPLE
gf:= (x^26-x^25 + 4*x^24 + 18*x^23 + 63*x^22 + 151*x^21 + 402*x^20 + 790*x^19 + 1511*x^18 + 2353*x^17 + 3400*x^16 + 4296*x^15 + 5115*x^14 + 5266*x^13 + 5115*x^12 + 4296*x^11 + 3400*x^10 + 2353*x^9 + 1511*x^8 + 790*x^7 + 402*x^6 + 151*x^5 + 63*x^4 + 18*x^3 + 4*x^2-x + 1)/((x^4-1)^4*(x^3-1)^5*(x^2-1)^4*(x-1)^3):
S:= series(gf, x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Aug 07 2015
MATHEMATICA
nn = 30; n = 4; CoefficientList[Series[CycleIndex[ Join[PairGroup[SymmetricGroup[n], Ordered], Permutations[Range[n*(n - 1) + 1, n*(n - 1) + n]], 2], s] /. Table[s[i] -> 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015*)
CROSSREFS
Column k=4 of A138107.
Cf. A005993.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Dec 30 1999
STATUS
approved
Array read by antidiagonals: T(n,k) is the number of directed loopless multigraphs with n arcs and k vertices.
+10
5
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 5, 2, 0, 0, 1, 1, 6, 10, 3, 0, 0, 1, 1, 6, 20, 24, 3, 0, 0, 1, 1, 6, 23, 69, 42, 4, 0, 0, 1, 1, 6, 24, 110, 196, 83, 4, 0, 0, 1, 1, 6, 24, 126, 427, 554, 132, 5, 0, 0, 1, 1, 6, 24, 129, 603, 1681, 1368, 222, 5, 0, 0
OFFSET
0,13
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (antidiagonals 0..50)
FORMULA
T(n,k) = A052170(n) for k >= 2*n.
EXAMPLE
==================================================
n\k | 0 1 2 3 4 5 6 7 8
----+---------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 ...
1 | 0 0 1 1 1 1 1 1 1 ...
2 | 0 0 2 5 6 6 6 6 6 ...
3 | 0 0 2 10 20 23 24 24 24 ...
4 | 0 0 3 24 69 110 126 129 130 ...
5 | 0 0 3 42 196 427 603 668 684 ...
6 | 0 0 4 83 554 1681 2983 3811 4116 ...
7 | 0 0 4 132 1368 5881 13681 20935 24979 ...
8 | 0 0 5 222 3240 19448 59680 112943 154504 ...
...
PROG
(PARI) \\ here G(k, x) gives column k as rational function.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}
T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
{my(A=T(10)); for(n=1, #A, print(A[n, ]))}
CROSSREFS
Columns k=0..4 are A000007, A000007, A008619, A037240, A050930.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 16 2020
STATUS
approved
Square array read by falling antidiagonals: T(n,k) is the number of connected directed multigraphs with loops with n arcs and at most k vertices.
+10
3
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 5, 1, 0, 1, 2, 8, 9, 1, 0, 1, 2, 8, 24, 17, 1, 0, 1, 2, 8, 32, 74, 26, 1, 0, 1, 2, 8, 32, 140, 189, 41, 1, 0, 1, 2, 8, 32, 167, 542, 460, 57, 1, 0, 1, 2, 8, 32, 167, 837, 1964, 989, 81, 1, 0, 1, 2, 8, 32, 167, 928, 4167, 6291, 2021, 106, 1, 0
OFFSET
0,8
COMMENTS
Partial sums of the rows of A139621, i.e., T(n,k) = sum(A139621(n,p),p=0..k).
LINKS
FORMULA
T(n,2) = A138107(n,2) - floor(n/2).
If k >= n+1, T(n,k) = A137975(n).
EXAMPLE
1 1 1 1 1 1 ...
0 1 2 2 2 2 ...
0 1 5 8 8 8 ...
0 1 9 24 32 32 ...
0 1 17 (...)
(...)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Benoit Jubin, May 06 2008
EXTENSIONS
Name edited by M. F. Hasler, Jul 31 2017
Terms a(32) and beyond from Andrew Howroyd, Oct 22 2019
STATUS
approved
Table read by antidiagonals: T(n,k) is the number of strongly connected directed multigraphs with loops with n arcs and up to k vertices.
+10
3
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 7, 1, 0, 1, 1, 2, 4, 11, 11, 1, 0, 1, 1, 2, 4, 12, 30, 20, 1, 0, 1, 1, 2, 4, 12, 36, 93, 29, 1, 0, 1, 1, 2, 4, 12, 37, 152, 237, 45, 1, 0, 1, 1, 2, 4, 12, 37, 161, 587, 579, 61, 1, 0
OFFSET
0,13
LINKS
FORMULA
T(n,k) = Sum_{p=0..k} A139622(n,p).
T(n,k) = A139627(n) for k >= n.
T(n,2) = A129620(n,2) - n*(n-1)/2.
EXAMPLE
Array begins:
=============================================
n\k | 0 1 2 3 4 5 6 7 8
----+----------------------------------------
0 | 1 1 1 1 1 1 1 1 1 ...
1 | 0 1 1 1 1 1 1 1 1 ...
2 | 0 1 2 2 2 2 2 2 2 ...
3 | 0 1 3 4 4 4 4 4 4 ...
4 | 0 1 7 11 12 12 12 12 12 ...
5 | 0 1 11 30 36 37 37 37 37 ...
6 | 0 1 20 93 152 161 162 162 162 ...
7 | 0 1 29 237 587 725 737 738 738 ...
8 | 0 1 45 579 2249 3610 3911 3927 3928 ...
...
PROG
(PARI) \\ See PARI link in A350489 for program code.
A(n)={my(data=A139622rows(n), M=matrix(n+1, n+1, i, j, if(i==1, 1, sum(k=1, min(i-1, j-1), data[i-1][k])))); M}
{ my(M=A(8)); for(n=1, #M~, print(M[n, ])) } \\ Andrew Howroyd, Jan 14 2022
CROSSREFS
Partial sums of the rows of A139622.
Main diagonal is A139627.
KEYWORD
nonn,tabl
AUTHOR
Benoit Jubin, Sep 02 2008
EXTENSIONS
Name clarified and terms a(32) and beyond from Andrew Howroyd, Jan 14 2022
STATUS
approved

Search completed in 0.013 seconds