login
Search: a112934 -id:a112934
     Sort: relevance | references | number | modified | created      Format: long | short | data
Logarithmic derivative of A112934 such that a(n)=(1/2)*A112934(n+1) for n>0, where A112934 equals the INVERT transform of double factorials A001147.
+20
9
1, 3, 13, 79, 641, 6579, 81677, 1187039, 19728193, 368562723, 7639512013, 173893382575, 4310656806977, 115569893763411, 3331588687405133, 102751933334045375, 3375782951798785921, 117693183724386637635
OFFSET
1,2
FORMULA
G.f.: log(1 + x + 2*x*[Sum_{n>=1} a(n)*x^n]) = Sum_{k>=1} a(n)/n*x^n.
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+4)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1/(x*G(0)) - 1/(2*x), where G(k)= 1 + 1/(1 - 2*x*(2*k+2)/(2*x*(2*k+2) - 1 + 2*x*(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
EXAMPLE
log(1+x + 2*x*[x + 3*x^2 + 13*x^3 + 79*x^4 + 641*x^5 +...])
= x + 3/2*x^2 + 13/3*x^3 + 79/4*x^4 + 641/5*x^5 +...
PROG
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+2*x^2*deriv(F)/F); return(n*polcoeff(log(F), n, x))}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2005
STATUS
approved
Square table, read by antidiagonals: the g.f. for row n is given recursively by (2*n-1)*x*R(n,x) = 1 + (2*n-3)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112934(k+1)*x^k.
+20
9
1, 1, 2, 1, 2, 6, 1, 2, 10, 26, 1, 2, 14, 74, 158, 1, 2, 18, 138, 706, 1282, 1, 2, 22, 218, 1686, 8162, 13158, 1, 2, 26, 314, 3194, 24162, 110410, 163354, 1, 2, 30, 426, 5326, 53890, 394254, 1708394, 2374078, 1, 2, 34, 554, 8178, 102722, 1019250, 7191018, 29752066, 39456386
OFFSET
0,3
COMMENTS
Compare with A111528, which has a similar definition.
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
Let d(n) = Product_{k = 1..n} 2*k-1 = A001147(n) denote the double factorial of odd numbers.
O.g.f. for row n: R(n,x) = ( Sum_{k >= 0} d(n+k)/d(n)*x^k )/( Sum_{k >= 0} d(n-1+k)/d(n-1)*x^k ).
R(n,x)/(1 - (2*n-1)*x*R(n,x)) = Sum_{k >= 0} d(n+k)/d(n)*x^k.
R(n,x) = 1/(1 + (2*n-1)*x - (2*n+1)*x/(1 + (2*n+1)*x - (2*n+3)*x/(1 + (2*n+3)*x - (2*n+5)*x/(1 + (2*n+5)*x - ... )))).
R(n,x) satisfies the Riccati differential equation 2*x^2*d/dx(R(n,x)) + (2*n-1)*x*R(n,x)^2 - (1 + (2*n-3)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 2*x/(1 - (2*n+1)*x/(1 - 4*x/(1 - (2*n+3)*x/(1 - 6*x/(1 - (2*n+5)*x/(1 - ... - 2*m*x/(1 - (2*n+2*m-1)*x/(1 - ... ))))))))), a continued fraction of Stieltjes type.
Row 0: A112934(n+1); Row 1; A000698(n+1).
EXAMPLE
Square array begins
1, 2, 6, 26, 158, 1282, 13158, 163354, 2374078, 39456386, ...
1, 2, 10, 74, 706, 8162, 110410, 1708394, 29752066, 576037442, ...
1, 2, 14, 138, 1686, 24162, 394254, 7191018, 144786006, 3188449602, ...
1, 2, 18, 218, 3194, 53890, 1019250, 21256090, 483426010, 11895873410, ...
1, 2, 22, 314, 5326, 102722, 2197558, 51355514, 1297759918, 35208930050, ...
1, 2, 26, 426, 8178, 176802, 4206618, 108577674, 3011332338, 89141101506, ...
1, 2, 30, 554, 11846, 283042, 7396830, 208569034, 6288011206, 201404591042, ...
...
MAPLE
T := (n, k) -> coeff(series(hypergeom([n+1/2, 1], [], 2*x)/ hypergeom([n-1/2, 1], [], 2*x), x, 21), x, k):
# display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
CROSSREFS
Cf. A112934 (row 0), A000698 (row 1), A355722 (row 2), A355723 (row 3), A355724 (row 4), A355725 (row 5). Cf. A001147, A111528.
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Jul 15 2022
STATUS
approved
Expansion of (1 - x + x^2) / (1 - x)^2 in powers of x.
+10
93
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
OFFSET
0,3
COMMENTS
1 followed by the natural numbers.
Molien series for ring of Hamming weight enumerators of self-dual codes (with respect to Euclidean inner product) of length n over GF(4).
Engel expansion of e (see A006784 for definition) [when offset by 1]. - Henry Bottomley, Dec 18 2000
Also the denominators of the series expansion of log(1+x). Numerators are A062157. - Robert G. Wilson v, Aug 14 2015
The right-shifted sequence (with a(0)=0) is an autosequence (of the first kind - see definition in links). - Jean-François Alcover, Mar 14 2017
LINKS
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
Olivia Nabawanda and Fanja Rakotondrajao, The sets of flattened partitions with forbidden patterns, arXiv:2011.07304 [math.CO], 2020.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Oeis Wiki, Autosequence
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
FORMULA
Binomial transform is A005183. - Paul Barry, Jul 21 2003
G.f.: (1 - x + x^2) / (1 - x)^2 = (1 - x^6) /((1 - x) * (1 - x^2) * (1 - x^3)) = (1 + x^3) / ((1 - x) * (1 - x^2)). a(0) = 1, a(n) = n if n>0.
Euler transform of length 6 sequence [ 1, 1, 1, 0, 0, -1]. - Michael Somos Jul 30 2006
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 - x)))). - Michael Somos, Apr 05 2012
G.f. of A112934(x) = 1 / (1 - a(0)*x / (1 - a(1)*x / ...)). - Michael Somos, Apr 05 2012
a(n) = A000027(n) unless n=0.
a(n) = Sum_{k=0..n} A123110(n,k). - Philippe Deléham, Oct 06 2009
E.g.f: 1+x*exp(x). - Wolfdieter Lang, May 03 2010
a(n) = sqrt(floor[A204503(n+3)/9]). - M. F. Hasler, Jan 16 2012
E.g.f.: 1-x + x*E(0), where E(k) = 2 + x/(2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(n) = A001477(n) + A000007(n). - Miko Labalan, Dec 12 2015 (See the first comment.)
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9 + ...
MAPLE
a:= n-> `if`(n=0, 1, n):
seq(a(n), n=0..60);
MATHEMATICA
Denominator@ CoefficientList[Series[Log[1+x], {x, 0, 75}], x] (* or *)
CoefficientList[ Series[(1 -x +x^2)/(1-x)^2, {x, 0, 75}], x] (* Robert G. Wilson v, Aug 14 2015 *)
Join[{1}, Range[75]] (* G. C. Greubel, Jan 05 2024 *)
LinearRecurrence[{2, -1}, {1, 1, 2}, 80] (* Harvey P. Dale, Jan 29 2025 *)
PROG
(PARI) {a(n) = (n==0) + max(n, 0)} /* Michael Somos, Feb 02 2004 */
(PARI) A028310(n)=n+!n \\ M. F. Hasler, Jan 16 2012
(Haskell)
a028310 n = 0 ^ n + n
a028310_list = 1 : [1..] -- Reinhard Zumkeller, Nov 06 2012
(Python)
def A028310(n): return n|bool(n)^1 # Chai Wah Wu, Jul 13 2023
(Magma) [n eq 0 select 1 else n: n in [0..75]]; // G. C. Greubel, Jan 05 2024
(SageMath) [n + int(n==0) for n in range(76)] # G. C. Greubel, Jan 05 2024
CROSSREFS
Cf. A000007, A000027, A000660 (boustrophedon transform).
KEYWORD
nonn,easy,mult
STATUS
approved
Double-superfactorials: a(n) = Product_{k=1..n} (2k)!.
+10
19
1, 2, 48, 34560, 1393459200, 5056584744960000, 2422112183371431936000000, 211155601241022491077587763200000000, 4417964278440225627098723475313498521600000000000
OFFSET
0,2
COMMENTS
Hankel transform of double factorial numbers A001147. - Paul Barry, Jan 28 2008
Hankel transform of A112934(n+1). - Paul Barry, Dec 04 2009
LINKS
C. Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
FORMULA
a(n) = Product_{k=0..n} (2*(k+1)*(2*k+1))^(n-k). - Paul Barry, Jan 28 2008
a(n) = A000178(n)*A057863(n)*A006125(n+1) = A121835(n)*A006125(n+1). - Paul Barry, Jan 28 2008
G.f.: G(0)/(2*x)-1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/(2*k+2)!/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) ~ 2^(n^2+2*n+17/24) * n^(n^2+3*n/2+11/24) * Pi^((n+1)/2) / (A^(1/2) * exp(3*n^2/2+3*n/2-1/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
a(n) = A^(3/2)*2^(n^2+n-1/24)*Pi^(-n/2-1/4)*G(n+3/2)*G(n+2)/exp(1/8), where G(n) is the Barnes G-function and A is the Glaisher-Kinkelin constant. - Ilya Gutkovskiy, Dec 11 2016
a(n) = A000178(2*n + 1) / A168467(n). - Vaclav Kotesovec, Oct 28 2017
For n > 0, a(n) = 2^((n+1)/2) * n * sqrt(BarnesG(2*n)*Gamma(n)) * Gamma(2*n). - Vaclav Kotesovec, Nov 27 2024
MATHEMATICA
Table[Product[(2k)!, {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Nov 13 2014 *)
PROG
(PARI) a(n) = prod(k=1, n, (2*k)!); \\ Michel Marcus, Dec 11 2016
(Magma) [&*[ Factorial(2*k): k in [0..n] ]: n in [0..10]]; // Vincenzo Librandi, Dec 11 2016
(Python)
from math import prod
def A098694(n): return prod(((k+1)*((k<<1)+1)<<1)**(n-k) for k in range(1, n+1))<<n # Chai Wah Wu, Nov 26 2023
KEYWORD
nonn
AUTHOR
Ralf Stephan, Sep 22 2004
STATUS
approved
INVERT transform (with offset) of triple factorials (A008544), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^3]/A(x)^3.
+10
16
1, 1, 3, 15, 111, 1131, 14943, 243915, 4742391, 106912131, 2739347103, 78569371275, 2492748594471, 86650852740531, 3274367635513263, 133625238021647835, 5856377114106629751, 274320168321004350531
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = 1+x + 3*x^2*[d/dx A(x)]/A(x) (log derivative).
G.f.: A(x) = 1+x +3*x^2/(1-5*x -3*2*2*x^2/(1-11*x -3*3*5*x^2/(1-17*x -3*4*8*x^2/(1-23*x -... -3*n*(3*n-4)*x^2/(1-(6*n-1)*x -...)))) (continued fraction).
G.f.: A(x) = 1/(1-x/(1 -2*x/(1-3*x/(1 -5*x/(1-6*x/(1 -8*x/(1-9*x/(1 -...)))))))) (continued fraction).
a(n) = (3*n - 2) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
G.f.: Q(0) where Q(k) = 1 - x*(3*k-1)/(1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 2/G(0)+4*x, where G(k)= 1 + 1/(1 - x*(3*k+3)/(x*(3*k+5) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - x*(3*k-1)/(x*(3*k-1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: -4/Sum_{n>=0} [Product_{k=0..n} (3*k-4)]*x^n. - Sergei N. Gladkovskii, Jun 06 2013
a(n) ~ n! * 3^(n-1) / (GAMMA(2/3) * n^(4/3)) . - Vaclav Kotesovec, Feb 22 2014
Given g.f. A(x), then y = x * A(x^3) satisfies y^2 = x*y + x^5*y'. - Michael Somos, Oct 17 2016
EXAMPLE
A(x) = 1 + x + 3*x^2 + 15*x^3 + 111*x^4 + 1131*x^5 + 14943*x^6 +...
1/A(x) = 1 - x - 2*x^2 - 10*x^3 - 80*x^4 - 880*x^5 -...-A008544(n)*x^(n+1)-...
MATHEMATICA
a = ConstantArray[0, 20]; a[[1]]=1; Do[a[[n]] = (3*n-2)*a[[n-1]] - Sum[a[[k]]*a[[n-k]], {k, 1, n-1}], {n, 2, 20}]; Flatten[{1, a}] (* Vaclav Kotesovec after Michael Somos, Feb 22 2014 *)
CoefficientList[Series[1/(1+(1/3*ExpIntegralE[2/3, -1/(3*x)])/E^(1/(3*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
PROG
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+3*x^2*deriv(F)/F); return(polcoeff(F, n, x))}
(PARI) {a(n) = my(A); if( n<1, n==0, A = vector(n, k, 1); for(k=2, n, A[k] = (3*k - 2)*A[k-1] - sum(j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 23 2011 */
(PARI) {a(n) = if( n<1, n==0, polcoeff( 1 / sum(k=0, n, x^k * prod(i=1, k, 3*i - 4), x * O(x^n)), n))}; /* Michael Somos, Oct 17 2016 */
(PARI) {a(n) = my(A); if( n<0, 0, A = O(x); for(k=0, n, A = (x + sqrt(x^2 + 4*x^5*A')) / 2); polcoeff(A, 3*n + 1))}; /* Michael Somos, Oct 17 2016 */
(PARI) {a(n) = my(A); if( n<1, n==0, A = x; for(k=1, n, A = truncate(A) + O(x^(3*k + 4)); A += A + x^4*A' - A^2/x); polcoeff(A, 3*n + 1))}; /* Michael Somos, Oct 17 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2005
STATUS
approved
Triangle T(n,k), read by rows, given by [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.
+10
14
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 5, 8, 0, 0, 6, 15, 17, 16, 0, 0, 24, 62, 68, 49, 32, 0, 0, 120, 322, 359, 243, 129, 64, 0, 0, 720, 2004, 2308, 1553, 756, 321, 128, 0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256, 0, 0, 40320, 119664
OFFSET
0,6
COMMENTS
Let R(m,n,k), 0<=k<=n, the Riordan array (1, x*g(x)) where g(x) is g.f. of the m-fold factorials . Then Sum_{k, 0<=k<=n} = R(m,n,k) = Sum_{k, 0<=k<=n} T(n,k)*m^(n-k).
For m = -1, R(-1,n,k) is A026729(n,k).
For m = 0, R(0,n,k) is A097805(n,k).
For m = 1, R(1,n,k) is A084938(n,k).
For m = 2, R(2,n,k) is A111106(n,k).
LINKS
FORMULA
Sum_{k, 0<=k<=n} (-1)^(n-k)*T(n, k) = A000045(n+1), Fibonacci numbers.
Sum_{k, 0<=k<=n} T(n, k) = A051295(n).
Sum_{k, 0<=k<=n} 2^(n-k)*T(n, k) = A112934(n).
T(0, 0) = 1, T(n, n) = 2^(n-1).
G.f.: A(x, y) = 1/(1 - x*y*Sum_{j>=0} (y-1+j)!/(y-1)!*x^j ). - Paul D. Hanna, Oct 26 2005
EXAMPLE
Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 4;
.0, 0, 2, 5, 8;
.0, 0, 6, 15, 17, 16;
.0, 0, 24, 62, 68, 49, 32;
.0, 0, 120, 322, 359, 243, 129, 64;
.0, 0, 720, 2004, 2308, 1553, 756, 321, 128;
.0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256;
.0, 0, 40320, 119664, 148232, 105048, 49840, 18066, 5756, 1793, 512;
....................................................................
At y=2: Sum_{k=0..n} 2^k*T(n,k) = A113327(n) where (1 + 2*x + 8*x^2 + 36*x^3 +...+ A113327(n)*x^n +..) = 1/(1 - 2/1!*x*(1! + 2!*x + 3!*x^2 + 4!*x^3 +..) ).
At y=3: Sum_{k=0..n} 3^k*T(n,k) = A113328(n) where (1 + 3*x + 18*x^2 + 117*x^3 +...+ A113328(n)*x^n +..) = 1/(1 - 3/2!*x*(2! + 3!*x + 4!*x^2 + 5!*x^3 +..) ).
At y=4: Sum_{k=0..n} 4^k*T(n,k) = A113329(n) where (1 + 4*x + 32*x^2 + 272*x^3 +...+ A113329(n)*x^n +..) = 1/(1 - 4/3!*x*(3! + 4!*x + 5!*x^2 + 6!*x^3 +..) ).
MATHEMATICA
T[n_, k_] := Module[{x = X + X*O[X]^n, y = Y + Y*O[Y]^k}, A = 1/(1 - x*y*Sum[x^j*Product[y + i, {i, 0, j - 1}], {j, 0, n}]); Coefficient[ Coefficient[A, X, n], Y, k]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, from PARI *)
PROG
(PARI) {T(n, k)=local(x=X+X*O(X^n), y=Y+Y*O(Y^k)); A=1/(1-x*y*sum(j=0, n, x^j*prod(i=0, j-1, y+i))); return(polcoeff(polcoeff(A, n, X), k, Y))} (Hanna)
CROSSREFS
Cf. m-fold factorials : A000142, A001147, A007559, A007696, A008548, A008542.
Cf. A113326, A113327 (y=2), A113328 (y=3), A113329 (y=4), A113330 (y=5), A113331 (y=6).
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 19 2005
STATUS
approved
a(n) = Product_{k=0..n} ((2*k+2)*(2*k+3))^(n-k).
+10
13
1, 6, 720, 3628800, 1316818944000, 52563198423859200000, 327312129899898454671360000000, 428017682605583614976547335700480000000000, 152240508705590071980086429193304853792686080000000000000
OFFSET
0,2
COMMENTS
Hankel transform of A000698(n+1).
The sequence 1,1,6,720,... with general term Product_{k=0..n, ((2k+1)(2k+0^k))^(n-k)} is the Hankel transform of A112934. - Paul Barry, Dec 04 2009
a(n) is also the determinant of the n X n matrix M(i,j) = i^(2*j)*sinh(2*j*arccsch(i))/(2*sqrt(i^2+1)), with i and j from 1 to n, which is the same matrix generated by sequences of length n by the linear recurrences with kernel { 2*(k^2 + z), -k^4 }, and initial conditions { 1, 2*(k^2 + z) }, with k from 1 to n, and z = 2. Regardless of the value of z, for every n, the determinant of the n X n matrix of polynomials generated gives always a(n) as result. - Federico Provvedi, Feb 01 2021
LINKS
FORMULA
G.f.: Q(0)/(2*x) -1/x, where Q(k) = 1 + 1/(1 -(2*k+1)!*x/((2*k+1)!*x + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
a(n) = Product_{k=1..n} (2*k+1)!. - Vladimir Reshetnikov, Sep 06 2016
a(n) ~ A^(-1/2) * 2^(n^2 + 3*n + 53/24) * exp((-3/2)*n^2 + (-5/2)*n + 1/24) * n^(n^2 + (5/2)*n + 35/24) * Pi^((n+1)/2), where A = A074962 is the Glaisher-Kinkelin constant. - Vladimir Reshetnikov, Sep 06 2016
a(n) = A000178(2*n + 1) / A098694(n). - Vaclav Kotesovec, Oct 28 2017
a(n) = A202768(n)*A000142(n). - Federico Provvedi, Feb 01 2021
For n > 0, a(n) = n * (2*n+1) * sqrt(BarnesG(2*n)) * Gamma(2*n)^2 / (sqrt(Gamma(n)) * 2^((n-3)/2)). - Vaclav Kotesovec, Nov 27 2024
EXAMPLE
From Federico Provvedi, Apr 01 2021: (Start)
From both formulas in the comment above and in particular with z=2 from the linear recurrences, the determinant of the 5 X 5 matrix: ( (1,6,35,204,1189), (1,12,128,1344,14080),(1,22,403,7084,123205), (1,36,1040,28224,749824), (1,54,2291,89964,3426181) ) = 1316818944000 = a(5).
For a generic z, the determinant doesn't change as shown in this example, where the determinant of the 3 X 3 square matrix:
( ( 1, 2*(z+1), (2*z + 1)*(2*z+3) ),
( 1, 2*(z+4), 4*(z+6)*(z+2) ),
( 1, 2*(z+9), (2*z + 9)(2*z + 27)) ) = 720 = a(3). (End)
MATHEMATICA
Table[2^(n^2 + 2*n + 23/24) Glaisher^(3/2) Pi^(-n/2 - 3/4) BarnesG[n + 2] BarnesG[n + 5/2]/E^(1/8), {n, 0, 10}] (* Vladimir Reshetnikov, Sep 06 2016 *)
Table[Product[((2k+2)(2k+3))^(n-k), {k, 0, n}], {n, 0, 10}] (* Harvey P. Dale, Dec 26 2019 *)
Table[Det@Table[LinearRecurrence[{2*k^2, -k^4}, {1, 2*k^2}, n], {k, 1, n}], {n, 1, 20}] (* Federico Provvedi, Feb 01 2021 *)
Det@Expand@Array[(#1^(2 #2))/(4 Sqrt[1 + #1^2])((Sqrt[1+1/#1^2]+1/#1)^(2 #2)-(Sqrt[1+1/#1^2]-1/#1)^(2 #2))&, {#, #}]&/@Range[20] (* Federico Provvedi, Apr 01 2021 *)
PROG
(Python)
from math import prod
def A168467(n): return prod(((m:=k+1<<1)*(m+1))**(n-k) for k in range(1, n+1))*3**n<<n # Chai Wah Wu, Nov 26 2023
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 26 2009
STATUS
approved
INVERT transform (with offset) of quadruple factorials (A008545), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^4]/A(x)^4.
+10
12
1, 1, 4, 28, 292, 4156, 75844, 1694812, 44835172, 1369657468, 47422855300, 1834403141788, 78377228106148, 3664969183404220, 186134931067171012, 10201887125268108508, 600142156513333537252, 37713563573426417361148
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1+x + 4*x^2*[d/dx A(x)]/A(x) (log derivative).
G.f.: A(x) = 1+x +4*x^2/(1-7*x -4*2*3*x^2/(1-15*x -4*3*7*x^2/(1-23*x -4*4*11*x^2/(1-31*x -... -4*n*(4*n-5)*x^2/(1-(8*n-1)*x -...)))) (continued fraction).
G.f.: A(x) = 1/(1-1*x/(1 -3*x/(1-4*x/(1 -7*x/(1-8*x/(1 -11*x/(1-12*x/(1 -...)))))))) (continued fraction).
G.f.: Q(0) where Q(k) = 1 - x*(4*k-1)/(1 - x*(4*k+4)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 1 + 2*x/G(0), where G(k)= 1 + 1/(1 - 2*x*(4*k+4)/(2*x*(4*k+4) - 1 + 2*x*(4*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
a(n) ~ (n-1)! * 4^(n-1) / (GAMMA(3/4) * n^(1/4)). - Vaclav Kotesovec, Feb 22 2014
EXAMPLE
A(x) = 1 + x + 4*x^2 + 28*x^3 + 292*x^4 + 4156*x^5 + ...
1/A(x) = 1 - x - 3*x^2 - 21*x^3 - 231*x^4 -... -A008545(n)*x^(n+1)-...
MATHEMATICA
CoefficientList[Series[1/(1 + 1/4*ExpIntegralE[3/4, -1/(4*x)]/E^(1/(4*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
PROG
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+4*x^2*deriv(F)/F); return(polcoeff(F, n, x))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2005
STATUS
approved
INVERT transform (with offset) of quintuple factorials (A008546), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^5]/A(x)^5.
+10
10
1, 1, 5, 45, 605, 11045, 257005, 7288245, 243870205, 9401560645, 410141056205, 19966451812245, 1072718714991005, 63033317759267045, 4020725747388170605, 276661592017425909045, 20424931173615717011005
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1+x + 5*x^2*[d/dx A(x)]/A(x) (log derivative). G.f.: A(x) = 1+x +5*x^2/(1-9*x -5*2*4*x^2/(1-19*x -5*3*9*x^2/(1-29*x -5*4*13*x^2/(1-39*x -... -5*n*(5*n-6)*x^2/(1-(10*n-1)*x -...)))) (continued fraction). G.f.: A(x) = 1/(1-1*x/(1 -4*x/(1-5*x/(1 -9*x/(1-10*x/(1 -14*x/(1-15*x/(1 -...)))))))) (continued fraction).
G.f.: 1 + x/( Q(0) - x ) where Q(k) = 1 - x*(5*k+4)/(1 - x*(5*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) ~ (n-1)! * 5^(n-1) / (GAMMA(4/5) * n^(1/5)). - Vaclav Kotesovec, Feb 22 2014
EXAMPLE
A(x) = 1 + x + 5*x^2 + 45*x^3 + 605*x^4 + 11045*x^5 +...
1/A(x) = 1 - x - 4*x^2 - 36*x^3 - 504*x^4 -... -A008546(n)*x^(n+1) -...
MATHEMATICA
CoefficientList[Series[1/(1 + 1/5*ExpIntegralE[4/5, -1/(5*x)]/E^(1/(5*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
PROG
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+5*x^2*deriv(F)/F); return(polcoeff(F, n, x))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2005
STATUS
approved
INVERT transform (with offset) of sextuple factorials (A008543), where g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^6]/A(x)^6.
+10
10
1, 1, 6, 66, 1086, 24186, 684006, 23506626, 951191646, 44281107066, 2330310876486, 136747268000706, 8851092668419326, 626304664252772346, 48092138192079689766, 3982448437177141451586, 353746119265020213643806
OFFSET
0,3
COMMENTS
Generally, if g.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^p]/A(x)^p, then a(n) ~ (n-1)! * p^(n-1) / (Gamma((p-1)/p) * n^(1/p)). - Vaclav Kotesovec, Feb 22 2014
LINKS
FORMULA
G.f. satisfies: A(x) = 1+x + 6*x^2*[d/dx A(x)]/A(x) (log derivative).
G.f.: A(x) = 1+x+6*x^2/(1-11*x-6*2*5*x^2/(1-23*x-6*3*11*x^2/(1-35*x -6*4*17*x^2/(1-47*x- ... -6*n*(6*n-7)*x^2/(1-(12*n-1)*x - ...)))) (continued fraction).
G.f.: A(x) = 1/(1-1*x/(1-5*x/(1-6*x/(1-11*x/(1-12*x/(1-17*x/(1-18*x/(1 -...)))))))) (continued fraction).
G.f.: G(0) where G(k) = 1 - x*(6*k-1)/( 1 - 6*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 24 2013
a(n) ~ (n-1)! * 6^(n-1) / (Gamma(5/6) * n^(1/6)). - Vaclav Kotesovec, Feb 22 2014
EXAMPLE
A(x) = 1 + x + 6*x^2 + 66*x^3 + 1086*x^4 + 24186*x^5 +...
1/A(x) = 1 - x - 5*x^2 - 55*x^3 - 935*x^4 -... -A008543(n)*x^(n+1)-...
MATHEMATICA
CoefficientList[Series[1/(1 + 1/6*ExpIntegralE[5/6, -1/(6*x)]/E^(1/(6*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 22 2014 *)
PROG
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+6*x^2*deriv(F)/F); return(polcoeff(F, n, x))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2005
STATUS
approved

Search completed in 0.015 seconds