login
Search: a024429 -id:a024429
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n into an odd number of parts.
+10
206
0, 1, 1, 2, 2, 4, 5, 8, 10, 16, 20, 29, 37, 52, 66, 90, 113, 151, 190, 248, 310, 400, 497, 632, 782, 985, 1212, 1512, 1851, 2291, 2793, 3431, 4163, 5084, 6142, 7456, 8972, 10836, 12989, 15613, 18646, 22316, 26561, 31659, 37556, 44601, 52743, 62416, 73593, 86809, 102064, 120025, 140736
OFFSET
0,4
COMMENTS
Number of partitions of n in which greatest part is odd.
Number of partitions of n+1 into an even number of parts, the least being 1. Example: a(5)=4 because we have [5,1], [3,1,1,1], [2,1,1] and [1,1,1,1,1,1].
Also number of partitions of n+1 such that the largest part is even and occurs only once. Example: a(5)=4 because we have [6], [4,2], [4,1,1] and [2,1,1,1,1]. - Emeric Deutsch, Apr 05 2006
Also the number of partitions of n such that the number of odd parts and the number of even parts have opposite parities. Example: a(8)=10 is a count of these partitions: 8, 611, 521, 431, 422, 41111, 332, 32111, 22211, 2111111. - Clark Kimberling, Feb 01 2014, corrected Jan 06 2021
In Chaves 2011 see page 38 equation (3.20). - Michael Somos, Dec 28 2014
Suppose that c(0) = 1, that c(1), c(2), ... are indeterminates, that d(0) = 1, and that d(n) = -c(n) - c(n-1)*d(1) - ... - c(0)*d(n-1). When d(n) is expanded as a polynomial in c(1), c(2),..,c(n), the terms are of the form H*c(i_1)*c(i_2)*...*c(i_k). Let P(n) = [c(i_1), c(i_2), ..., c(i_k)], a partition of n. Then H is negative if P has an odd number of parts, and H is positive if P has an even number of parts. That is, d(n) has A027193(n) negative coefficients, A027187(n) positive coefficients, and A000041 terms. The maximal coefficient in d(n), in absolute value, is A102462(n). - Clark Kimberling, Dec 15 2016
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 39, Example 7.
LINKS
Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function p_0(n).
FORMULA
a(n) = (A000041(n) - (-1)^n*A000700(n)) / 2.
For g.f. see under A027187.
G.f.: Sum(k>=1, x^(2*k-1)/Product(j=1..2*k-1, 1-x^j ) ). - Emeric Deutsch, Apr 05 2006
G.f.: - Sum(k>=1, (-x)^(k^2)) / Product(k>=1, 1-x^k ). - Joerg Arndt, Feb 02 2014
G.f.: Sum(k>=1, x^(k*(2*k-1)) / Product(j=1..2*k, 1-x^j)). - Michael Somos, Dec 28 2014
a(2*n) = A000701(2*n), a(2*n-1) = A046682(2*n-1); a(n) = A000041(n)-A027187(n). - Reinhard Zumkeller, Apr 22 2006
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 8*x^7 + 10*x^8 + 16*x^9 + 20*x^10 + ...
From Gus Wiseman, Feb 11 2021: (Start)
The a(1) = 1 through a(8) = 10 partitions into an odd number of parts are the following. The Heinz numbers of these partitions are given by A026424.
(1) (2) (3) (4) (5) (6) (7) (8)
(111) (211) (221) (222) (322) (332)
(311) (321) (331) (422)
(11111) (411) (421) (431)
(21111) (511) (521)
(22111) (611)
(31111) (22211)
(1111111) (32111)
(41111)
(2111111)
The a(1) = 1 through a(8) = 10 partitions whose greatest part is odd are the following. The Heinz numbers of these partitions are given by A244991.
(1) (11) (3) (31) (5) (33) (7) (53)
(111) (1111) (32) (51) (52) (71)
(311) (321) (322) (332)
(11111) (3111) (331) (521)
(111111) (511) (3221)
(3211) (3311)
(31111) (5111)
(1111111) (32111)
(311111)
(11111111)
(End)
MAPLE
g:=sum(x^(2*k)/product(1-x^j, j=1..2*k-1), k=1..40): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=1..45); # Emeric Deutsch, Apr 05 2006
MATHEMATICA
nn=40; CoefficientList[Series[ Sum[x^(2j+1)Product[1/(1- x^i), {i, 1, 2j+1}], {j, 0, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Dec 01 2012 *)
a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[ n], OddQ[ Length@#] &]]; (* Michael Somos, Dec 28 2014 *)
a[ n_] := If[ n < 1, 0, Length@Select[ IntegerPartitions[ n], OddQ[ First@#] &]]; (* Michael Somos, Dec 28 2014 *)
a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[ n + 1], #[[-1]] == 1 && EvenQ[ Length@#] &]]; (* Michael Somos, Dec 28 2014 *)
a[ n_] := If[ n < 1, 0, Length@Select[ IntegerPartitions[ n + 1], EvenQ[ First@#] && (Length[#] < 2 || #[[1]] != #[[2]]) &]]; (* Michael Somos, Dec 28 2014 *)
PROG
(PARI) {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, if( k%2, x^k / prod( j=1, k, 1 - x^j, 1 + x * O(x^(n-k)) ))), n))}; /* Michael Somos, Jul 24 2012 */
(PARI) q='q+O('q^66); concat([0], Vec( (1/eta(q)-eta(q)/eta(q^2))/2 ) ) \\ Joerg Arndt, Mar 23 2014
CROSSREFS
The Heinz numbers of these partitions are A026424 or A244991.
The even-length version is A027187.
The case of odd sum as well as length is A160786, ranked by A340931.
The case of odd maximum as well as length is A340385.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.
A000009 counts partitions into odd parts, ranked by A066208.
A026804 counts partitions whose least part is odd.
A058695 counts partitions of odd numbers, ranked by A300063.
A072233 counts partitions by sum and length.
A101707 counts partitions of odd positive rank.
KEYWORD
nonn
STATUS
approved
Number of partitions of n into distinct parts such that number of parts is odd.
+10
85
0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859, 3189, 3554, 3958, 4404
OFFSET
0,7
COMMENTS
Ramanujan theta functions: phi(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), end of section 16.4.2 "Partitions into distinct parts", pp.348ff
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160 (March 2016), Pages 60-75, function q_o(n).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
For g.f. see under A067661.
a(n) = (A000009(n)-A010815(n))/2. - Vladeta Jovovic, Feb 24 2002
Expansion of (1-phi(-q))/(2*chi(-q)) in powers of q where phi(),chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006
G.f.: sum(n>=1, q^(2*n^2-n) / prod(k=1..2*n-1, 1-q^k ) ). [Joerg Arndt, Apr 01 2014]
a(n) = A067661(n) - A010815(n). - Andrey Zabolotskiy, Apr 12 2017
A000009(n) = a(n) + A067661(n). - Gus Wiseman, Jan 09 2021
EXAMPLE
From Gus Wiseman, Jan 09 2021: (Start)
The a(5) = 1 through a(15) = 14 partitions (A-F = 10..15):
5 6 7 8 9 A B C D E F
321 421 431 432 532 542 543 643 653 654
521 531 541 632 642 652 743 753
621 631 641 651 742 752 762
721 731 732 751 761 843
821 741 832 842 852
831 841 851 861
921 931 932 942
A21 941 951
A31 A32
B21 A41
B31
C21
54321
(End)
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 01 2014
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
CoefficientList[Normal[Series[(QPochhammer[-x, x]-QPochhammer[x])/2, {x, 0, 100}]], x] (* Andrey Zabolotskiy, Apr 12 2017 *)
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&]], {n, 0, 30}] (* Gus Wiseman, Jan 09 2021 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)/eta(x+A) - eta(x+A))/2, n))} /* Michael Somos, Feb 14 2006 */
(PARI) N=66; q='q+O('q^N); S=1+2*sqrtint(N);
gf=sum(n=1, S, (n%2!=0) * q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
concat( [0], Vec(gf) ) /* Joerg Arndt, Oct 20 2012 */
(PARI) N=66; q='q+O('q^N); S=1+sqrtint(N);
gf=sum(n=1, S, q^(2*n^2-n) / prod(k=1, 2*n-1, 1-q^k ) );
concat( [0], Vec(gf) ) \\ Joerg Arndt, Apr 01 2014
CROSSREFS
Dominates A000009.
Numbers with these strict partitions as binary indices are A000069.
The non-strict version is A027193.
The Heinz numbers of these partitions are A030059.
The even version is A067661.
The version for rank is A117193, with non-strict version A101707.
The ordered version is A332304, with non-strict version A166444.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A174726 counts ordered factorizations of odd length.
- A339890 counts factorizations of odd length.
A008289 counts strict partitions by sum and length.
A026804 counts partitions whose least part is odd, with strict case A026832.
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Feb 23 2002
STATUS
approved
Number of odd-length factorizations of n into factors > 1.
+10
78
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 5, 1, 2, 1, 2, 1, 2, 1, 8, 1, 1, 2, 2, 1, 2, 1, 6, 2, 1, 1, 5, 1, 1, 1
OFFSET
1,8
LINKS
FORMULA
a(n) + A339846(n) = A001055(n).
EXAMPLE
The a(n) factorizations for n = 24, 48, 60, 72, 96, 120:
24 48 60 72 96 120
2*2*6 2*3*8 2*5*6 2*4*9 2*6*8 3*5*8
2*3*4 2*4*6 3*4*5 2*6*6 3*4*8 4*5*6
3*4*4 2*2*15 3*3*8 4*4*6 2*2*30
2*2*12 2*3*10 3*4*6 2*2*24 2*3*20
2*2*2*2*3 2*2*18 2*3*16 2*4*15
2*3*12 2*4*12 2*5*12
2*2*2*3*3 2*2*2*2*6 2*6*10
2*2*2*3*4 3*4*10
2*2*2*3*5
MAPLE
g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
`if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
d=numtheory[divisors](n) minus {1, n}))
end:
a:= n-> `if`(n<2, 0, g(n$2, 1)):
seq(a(n), n=1..100); # Alois P. Heinz, Dec 30 2020
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], OddQ@Length[#]&]], {n, 100}]
CROSSREFS
The case of set partitions (or n squarefree) is A024429.
The case of partitions (or prime powers) is A027193.
The ordered version is A174726 (even: A174725).
The remaining (even-length) factorizations are counted by A339846.
A000009 counts partitions into odd parts, ranked by A066208.
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length, ranked by A026424.
A058695 counts partitions of odd numbers, ranked by A300063.
A160786 counts odd-length partitions of odd numbers, ranked by A300272.
A316439 counts factorizations by product and length.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 28 2020
STATUS
approved
Expansion of e.g.f. cosh(exp(x)-1).
+10
32
1, 0, 1, 3, 8, 25, 97, 434, 2095, 10707, 58194, 338195, 2097933, 13796952, 95504749, 692462671, 5245040408, 41436754261, 340899165549, 2915100624274, 25857170687507, 237448494222575, 2253720620740362, 22078799199129799, 222987346441156585, 2319210969809731600
OFFSET
0,4
COMMENTS
Number of partitions of an n-element set into an even number of classes.
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k); entry gives A sequence (cf. A024429).
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 5th line of table.
S. K. Ghosal, J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.
L. Lovasz, Combinatorial Problems and Exercises, North-Holland, 1993, pp. 15, 148.
LINKS
A. Fekete and G. Martin, Problem 10791: Squared Series Yielding Integers, Amer. Math. Monthly, 108 (No. 2, 2001), 177-178.
Eric Weisstein's World of Mathematics, Stirling Transform.
FORMULA
a(n) = S(n, 2) + S(n, 4) + ... + S(n, 2k), where k = [ n/2 ], S(i, j) are Stirling numbers of second kind.
E.g.f.: cosh(exp(x)-1). - N. J. A. Sloane, Jan 28, 2001
a(n) = (A000110(n) + A000587(n)) / 2. - Peter Luschny, Apr 25 2011
O.g.f.: Sum_{n>=0} x^(2*n) / Product_{k=0..2*n} (1 - k*x). - Paul D. Hanna, Sep 05 2012
G.f.: G(0)/(1+x) where G(k) = 1 - x*(2*k+1)/((2*x*k-1) - x*(2*x*k-1)/(x - (2*k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 05 2013
G.f.: G(0)/(1+2*x) where G(k) = 1 - 2*x*(k+1)/((2*x*k-1) - x*(2*x*k-1)/(x - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 05 2013
a(n) ~ n^n / (2 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Aug 04 2014
MAPLE
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..28); # Alois P. Heinz, Jan 15 2018
with(combinat); seq((bell(n) + BellB(n, -1))/2, n = 0..20); # G. C. Greubel, Oct 09 2019
MATHEMATICA
nn=20; a=Exp[Exp[x]-1]; Range[0, nn]!CoefficientList[Series[(a+1/a)/2, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 04 2012 *)
Table[(BellB[n] + BellB[n, -1])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
PROG
(Sage)
def A024430(n) :
return add(stirling_number2(n, i) for i in range(0, n+(n+1)%2, 2))
# Peter Luschny, Feb 28 2012
(PARI) {a(n)=polcoeff(sum(m=0, n, x^(2*m)/prod(k=1, 2*m, 1-k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012
(Magma) a:= func< n | (&+[StirlingSecond(n, 2*k): k in [0..Floor(n/2)]]) >;
[a(n): n in [0..25]]; // G. C. Greubel, Oct 09 2019
(GAP) List([0..25], n-> Sum([0..Int(n/2)], k-> Stirling2(n, 2*k)) ); # G. C. Greubel, Oct 09 2019
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Description changed by N. J. A. Sloane, Jun 14 2003 and again Sep 05 2006
STATUS
approved
a(n) = (A002033(n-1) - A008683(n))/2
+10
23
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 2, 4, 1, 7, 1, 8, 1, 1, 1, 13, 1, 1, 1, 10, 1, 7, 1, 4, 4, 1, 1, 24, 1, 4, 1, 4, 1, 10, 1, 10, 1, 1, 1, 22, 1, 1, 4, 16, 1, 7, 1, 4, 1, 7, 1, 38, 1, 1, 4, 4, 1
OFFSET
1,8
COMMENTS
a(n) is the number of permutation matrices with a negative contribution to the determinant that is the Möbius function. See A174725 for how the determinant is defined. - Mats Granvik, May 26 2017
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an odd number of factors > 1. The unordered case is A339890. For example, the a(n) factorizations for n = 8, 12, 24, 30, 32, 36 are:
(8) (12) (24) (30) (32) (36)
(2*2*2) (2*2*3) (2*2*6) (2*3*5) (2*2*8) (2*2*9)
(2*3*2) (2*3*4) (2*5*3) (2*4*4) (2*3*6)
(3*2*2) (2*4*3) (3*2*5) (2*8*2) (2*6*3)
(2*6*2) (3*5*2) (4*2*4) (2*9*2)
(3*2*4) (5*2*3) (4*4*2) (3*2*6)
(3*4*2) (5*3*2) (8*2*2) (3*3*4)
(4*2*3) (2*2*2*2*2) (3*4*3)
(4*3*2) (3*6*2)
(6*2*2) (4*3*3)
(6*2*3)
(6*3*2)
(9*2*2)
(End)
LINKS
FORMULA
a(n) = (A002033(n-1) - A008683(n))/2. - Mats Granvik, May 26 2017
For n > 0, a(n) + A174725(n) = A074206(n). - Gus Wiseman, Jan 04 2021
MATHEMATICA
ordfacs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#1, d]&)/@ordfacs[n/d], {d, Rest[Divisors[n]]}]];
Table[Length[Select[ordfacs[n], OddQ@*Length]], {n, 100}] (* Gus Wiseman, Jan 04 2021 *)
CROSSREFS
The even version is A174725.
The unordered case is A339890, with even version A339846.
A001055 counts factorizations, with strict case A045778.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
A340102 counts odd-length factorizations into odd factors.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A027193 counts partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A332304 counts strict compositions of odd length.
KEYWORD
nonn
AUTHOR
Mats Granvik, Mar 28 2010
STATUS
approved
Number of factorizations of n into an odd number of factors > 1, the greatest of which is odd.
+10
20
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1, 1, 1, 2, 2, 0, 1, 3, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 0, 1, 4
OFFSET
1,27
LINKS
EXAMPLE
The a(n) factorizations for n = 27, 84, 108, 180, 252, 360, 432:
27 2*6*7 2*6*9 4*5*9 4*7*9 5*8*9 6*8*9
3*3*3 3*4*7 3*4*9 2*2*45 6*6*7 2*4*45 2*8*27
2*2*21 2*2*27 2*6*15 2*2*63 3*8*15 4*4*27
2*2*3*3*3 3*4*15 2*6*21 4*6*15 2*2*2*6*9
2*2*3*3*5 3*4*21 2*12*15 2*2*3*4*9
2*2*3*3*7 2*2*2*5*9 2*2*2*2*27
2*3*3*4*5 2*2*2*2*3*3*3
2*2*2*3*15
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], OddQ[Length[#]]&&OddQ[Max@@#]&]], {n, 100}]
PROG
(PARI) A340607(n, m=n, k=0, grodd=0) = if(1==n, k, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(grodd||(d%2)), s += A340607(n/d, d, 1-k, bitor(1, grodd)))); (s)); \\ Antti Karttunen, Dec 13 2021
CROSSREFS
Note: Heinz numbers are given in parentheses below.
The case of odd length only is A339890.
The case of all odd factors is A340102.
The version for partitions is A340385.
The version for prime indices is A340386.
The case of odd maximum only is A340831.
A000009 counts partitions into odd parts (A066208).
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A078408 counts odd-length partitions into odd numbers (A300272).
A316439 counts factorizations by sum and length.
A340101 counts factorizations (into odd factors = of odd numbers).
A340832 counts factorizations whose least part is odd.
A340854/A340855 lack/have a factorization with odd minimum.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 25 2021
EXTENSIONS
Data section extended up to 108 terms by Antti Karttunen, Dec 13 2021
STATUS
approved
Numbers that cannot be factored into factors > 1, the least of which is odd.
+10
20
1, 2, 4, 6, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 44, 46, 52, 58, 62, 64, 68, 74, 76, 82, 86, 88, 92, 94, 104, 106, 116, 118, 122, 124, 128, 134, 136, 142, 146, 148, 152, 158, 164, 166, 172, 178, 184, 188, 194, 202, 206, 212, 214, 218, 226, 232, 236, 244
OFFSET
1,2
COMMENTS
Consists of 1 and all numbers that are even and have no odd divisor 1 < d <= n/d.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {} 44: {1,1,5} 106: {1,16}
2: {1} 46: {1,9} 116: {1,1,10}
4: {1,1} 52: {1,1,6} 118: {1,17}
6: {1,2} 58: {1,10} 122: {1,18}
8: {1,1,1} 62: {1,11} 124: {1,1,11}
10: {1,3} 64: {1,1,1,1,1,1} 128: {1,1,1,1,1,1,1}
14: {1,4} 68: {1,1,7} 134: {1,19}
16: {1,1,1,1} 74: {1,12} 136: {1,1,1,7}
20: {1,1,3} 76: {1,1,8} 142: {1,20}
22: {1,5} 82: {1,13} 146: {1,21}
26: {1,6} 86: {1,14} 148: {1,1,12}
28: {1,1,4} 88: {1,1,1,5} 152: {1,1,1,8}
32: {1,1,1,1,1} 92: {1,1,9} 158: {1,22}
34: {1,7} 94: {1,15} 164: {1,1,13}
38: {1,8} 104: {1,1,1,6} 166: {1,23}
For example, the factorizations of 88 are (2*2*2*11), (2*2*22), (2*4*11), (2*44), (4*22), (8*11), (88), none of which has odd minimum, so 88 is in the sequence.
MATHEMATICA
Select[Range[100], Function[n, n==1||EvenQ[n]&&Select[Rest[Divisors[n]], OddQ[#]&&#<=n/#&]=={}]]
CROSSREFS
The version looking at greatest factor is A000079.
The version for twice-balanced is A340656, with complement A340657.
These factorization are counted by A340832.
The complement is A340855.
A033676 selects the maximum inferior divisor.
A038548 counts inferior divisors.
A055396 selects the least prime index.
- Factorizations -
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts.
A024429 counts set partitions of odd length.
A026424 lists numbers with odd Omega.
A066208 lists Heinz numbers of partitions into odd parts.
A067659 counts strict partitions of odd length (A030059).
A174726 counts ordered factorizations of odd length.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2021
STATUS
approved
Numbers that can be factored into factors > 1, the least of which is odd.
+10
19
3, 5, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95
OFFSET
1,1
COMMENTS
These are numbers that are odd or have an odd divisor 1 < d <= n/d.
EXAMPLE
The sequence of terms together with their prime indices begins:
3: {2} 27: {2,2,2} 48: {1,1,1,1,2}
5: {3} 29: {10} 49: {4,4}
7: {4} 30: {1,2,3} 50: {1,3,3}
9: {2,2} 31: {11} 51: {2,7}
11: {5} 33: {2,5} 53: {16}
12: {1,1,2} 35: {3,4} 54: {1,2,2,2}
13: {6} 36: {1,1,2,2} 55: {3,5}
15: {2,3} 37: {12} 56: {1,1,1,4}
17: {7} 39: {2,6} 57: {2,8}
18: {1,2,2} 40: {1,1,1,3} 59: {17}
19: {8} 41: {13} 60: {1,1,2,3}
21: {2,4} 42: {1,2,4} 61: {18}
23: {9} 43: {14} 63: {2,2,4}
24: {1,1,1,2} 45: {2,2,3} 65: {3,6}
25: {3,3} 47: {15} 66: {1,2,5}
For example, 72 is in the sequence because it has three suitable factorizations: (3*3*8), (3*4*6), (3*24).
MATHEMATICA
Select[Range[100], Function[n, n>1&&(OddQ[n]||Select[Rest[Divisors[n]], OddQ[#]&&#<=n/#&]!={})]]
CROSSREFS
The version looking at greatest factor is A057716.
The version for twice-balanced is A340657, with complement A340656.
These factorization are counted by A340832.
The complement is A340854.
A033676 selects the maximum inferior divisor.
A038548 counts inferior divisors, listed by A161906.
A055396 selects the least prime index.
- Factorizations -
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts.
A024429 counts set partitions of odd length.
A026424 lists numbers with odd Omega.
A066208 lists Heinz numbers of partitions into odd parts.
A067659 counts strict partitions of odd length (A030059).
A174726 counts ordered factorizations of odd length.
A332304 counts strict compositions of odd length.
A340692 counts partitions of odd rank.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2021
STATUS
approved
Number of integer partitions of n into an odd number of parts, the greatest of which is odd.
+10
18
1, 0, 2, 0, 3, 1, 6, 3, 10, 7, 18, 15, 30, 28, 51, 50, 82, 87, 134, 145, 211, 235, 331, 375, 510, 586, 779, 901, 1172, 1366, 1750, 2045, 2581, 3026, 3778, 4433, 5476, 6430, 7878, 9246, 11240, 13189, 15931, 18670, 22417, 26242, 31349, 36646, 43567, 50854
OFFSET
1,3
EXAMPLE
The a(3) = 2 through a(10) = 7 partitions:
3 5 321 7 332 9 532
111 311 322 521 333 541
11111 331 32111 522 721
511 531 32221
31111 711 33211
1111111 32211 52111
33111 3211111
51111
3111111
111111111
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]*Max[#]]&]], {n, 30}]
CROSSREFS
Partitions of odd length are counted by A027193, ranked by A026424.
Partitions with odd maximum are counted by A027193, ranked by A244991.
The Heinz numbers of these partitions are given by A340386.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.
A000009 counts partitions into odd parts, ranked by A066208.
A026804 counts partitions whose least part is odd.
A058695 counts partitions of odd numbers, ranked by A300063.
A072233 counts partitions by sum and length.
A101707 counts partitions with odd rank.
A160786 counts odd-length partitions of odd numbers, ranked by A300272.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 08 2021
STATUS
approved
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives A sequence (cf. A121868).
+10
15
1, 0, -1, -3, -6, -5, 33, 266, 1309, 4905, 11516, -22935, -556875, -4932512, -32889885, -174282151, -612400262, 907955295, 45283256165, 573855673458, 5397236838345, 41604258561397, 250231901787780, 756793798761989, -8425656230853383, -213091420659985440, -2990113204010882473
OFFSET
0,4
COMMENTS
Stirling transform of A056594.
LINKS
A. Fekete and G. Martin, Problem 10791: Squared Series Yielding Integers, Amer. Math. Monthly, 108 (No. 2, 2001), 177-178.
FORMULA
From Peter Bala, Aug 28 2008: (Start)
This sequence and its companion A121868 are related to the pair of constants cos(1) + sin(1) and cos(1) - sin(1) and may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2) * n^k/n! for k = 0,1,2,... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1). It is easy to see that E_2(k+2) = E_2(k+1) - Sum_{i = 0..k} 2^i*binomial(k,i)*E_2(k-i) for k >= 0. Hence E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = - E_2(0) + E_2(1), E_2(3) = -3*E_2(0) and E_2(4) = - 6*E_2(0) - 5*E_2(1). More examples are given below.
To find the precise result, show F(k) := Sum_{n >= 0} (-1)^floor((n+1)/2)*n^k/n! satisfies the above recurrence with F(0) = E_2(1) and F(1) = -E_2(0) and then use the identity Sum_{i = 0..k} binomial(k,i)*E_2(i) = -F(k+1) to obtain E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1). For similar results see A143628. The decimal expansions of E_2(0) and E_2(1) are given in A143623 and A143624 respectively. (End)
E.g.f.: A(x) = cos(exp(x)-1).
a(n) = Sum_{k=0..floor(n/2)} stirling2(n,2*k)*(-1)^(k). - Vladimir Kruchinin, Jan 29 2011
EXAMPLE
From Peter Bala, Aug 28 2008: (Start)
E_2(k) as linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
...
(End)
MAPLE
# Maple code for A024430, A024429, A121867, A121868.
M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
for n from 1 to M do a[n]:=add(binomial(n-1, k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1, k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1, k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1, k)*c[k], k=0..n-1); od: ta:=[seq(a[n], n=0..M)]; tb:=[seq(b[n], n=0..M)]; tc:=[seq(c[n], n=0..M)]; td:=[seq(d[n], n=0..M)];
# Code based on Stirling transform:
stirtr:= proc(p) proc(n) option remember;
add(p(k) *Stirling2(n, k), k=0..n) end
end:
a:= stirtr(n-> (I^n + (-I)^n)/2):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 29 2011
MATHEMATICA
a[n_] := (BellB[n, -I] + BellB[n, I])/2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 06 2013, after Alois P. Heinz *)
PROG
(PARI) a(n) = sum(k=0, n\2, (-1)^k*stirling(n, 2*k, 2));
vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
(Magma) [(&+[(-1)^k*StirlingSecond(n, 2*k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
(Sage) [sum((-1)^k*stirling_number2(n, 2*k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
(GAP) List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n, 2*k)) ); # G. C. Greubel, Oct 09 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Sep 05 2006
STATUS
approved

Search completed in 0.027 seconds