login
Search: a010693 -id:a010693
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A007504(n) + A010693(n).
+20
0
2, 5, 7, 13, 19, 31, 43, 61, 79, 103, 131, 163, 199, 241, 283, 331, 383, 443, 503, 571, 641, 715, 793, 877, 965, 1063, 1163, 1267, 1373, 1483, 1595, 1723, 1853, 1991, 2129, 2279, 2429, 2587, 2749, 2917, 3089, 3269, 3449, 3641, 3833, 4031, 4229
OFFSET
0,1
COMMENTS
Sequence is interesting because of the fact that a(n) is a prime number for n = 0..20.
Main inspiration of sequence was indices of prime numbers in A036439 and A227547.
FORMULA
a(n) = Sum_{k=1..n} prime(k) + n mod 2 + 2 for n>0, a(0)=2 (from Pari code).
EXAMPLE
a(0) = A007504(0) + A010693(0) = 0 + 2 = 2.
a(1) = A007504(1) + A010693(1) = 2 + 3 = 5.
a(2) = A007504(2) + A010693(2) = 5 + 2 = 7.
a(3) = A007504(3) + A010693(3) = 10 + 3 = 13.
a(4) = A007504(4) + A010693(4) = 17 + 2 = 19.
a(5) = A007504(5) + A010693(5) = 28 + 3 = 31.
MATHEMATICA
s = Accumulate@ Prime@ Range@ 1200; {2}~Join~Table[s[[n]] + If[OddQ@ n, 3, 2], {n, 46}] (* Michael De Vlieger, Sep 21 2015 *)
PROG
(PARI) a(n) = sum(k=1, n, prime(k)) + (n%2) + 2;
vector(50, n, a(n-1))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Sep 21 2015
STATUS
approved
Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0's and 1's.
+10
575
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1
OFFSET
0,1
COMMENTS
Named after Axel Thue, whose name is pronounced as if it were spelled "Tü" where the ü sound is roughly as in the German word üben. (It is incorrect to say "Too-ee" or "Too-eh".) - N. J. A. Sloane, Jun 12 2018
Also called the Thue-Morse infinite word, or the Morse-Hedlund sequence, or the parity sequence.
Fixed point of the morphism 0 --> 01, 1 --> 10, see example. - Joerg Arndt, Mar 12 2013
The sequence is cubefree (does not contain three consecutive identical blocks) [see Offner for a direct proof] and is overlap-free (does not contain XYXYX where X is 0 or 1 and Y is any string of 0's and 1's).
a(n) = "parity sequence" = parity of number of 1's in binary representation of n.
To construct the sequence: alternate blocks of 0's and 1's of successive lengths A003159(k) - A003159(k-1), k = 1, 2, 3, ... (A003159(0) = 0). Example: since the first seven differences of A003159 are 1, 2, 1, 1, 2, 2, 2, the sequence starts with 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0. - Emeric Deutsch, Jan 10 2003
Characteristic function of A000069 (odious numbers). - Ralf Stephan, Jun 20 2003
a(n) = S2(n) mod 2, where S2(n) = sum of digits of n, n in base-2 notation. There is a class of generalized Thue-Morse sequences: Let Sk(n) = sum of digits of n; n in base-k notation. Let F(t) be some arithmetic function. Then a(n)= F(Sk(n)) mod m is a generalized Thue-Morse sequence. The classical Thue-Morse sequence is the case k=2, m=2, F(t)= 1*t. - Ctibor O. Zizka, Feb 12 2008 (with correction from Daniel Hug, May 19 2017)
More generally, the partial sums of the generalized Thue-Morse sequences a(n) = F(Sk(n)) mod m are fractal, where Sk(n) is sum of digits of n, n in base k; F(t) is an arithmetic function; m integer. - Ctibor O. Zizka, Feb 25 2008
Starting with offset 1, = running sums mod 2 of the kneading sequence (A035263, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ...); also parity of A005187: (1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, ...). - Gary W. Adamson, Jun 15 2008
Generalized Thue-Morse sequences mod n (n>1) = the array shown in A141803. As n -> infinity the sequences -> (1, 2, 3, ...). - Gary W. Adamson, Jul 10 2008
The Thue-Morse sequence for N = 3 = A053838, (sum of digits of n in base 3, mod 3): (0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, ...) = A004128 mod 3. - Gary W. Adamson, Aug 24 2008
For all positive integers k, the subsequence a(0) to a(2^k-1) is identical to the subsequence a(2^k+2^(k-1)) to a(2^(k+1)+2^(k-1)-1). That is to say, the first half of A_k is identical to the second half of B_k, and the second half of A_k is identical to the first quarter of B_{k+1}, which consists of the k/2 terms immediately following B_k.
Proof: The subsequence a(2^k+2^(k-1)) to a(2^(k+1)-1), the second half of B_k, is by definition formed from the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, by interchanging its 0's and 1's. In turn, the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, which is by definition also B_{k-1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), the first half of A_k, which is by definition also A_{k-1}, by interchanging its 0's and 1's. Interchanging the 0's and 1's of a subsequence twice leaves it unchanged, so the subsequence a(2^k+2^(k-1)) to a(2^(k+1)-1), the second half of B_k, must be identical to the subsequence a(0) to a(2^(k-1)-1), the first half of A_k.
Also, the subsequence a(2^(k+1)) to a(2^(k+1)+2^(k-1)-1), the first quarter of B_{k+1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), the first quarter of A_{k+1}, by interchanging its 0's and 1's. As noted above, the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, which is by definition also B_{k-1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), which is by definition A_{k-1}, by interchanging its 0's and 1's, as well. If two subsequences are formed from the same subsequence by interchanging its 0's and 1's then they must be identical, so the subsequence a(2^(k+1)) to a(2^(k+1)+2^(k-1)-1), the first quarter of B_{k+1}, must be identical to the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k.
Therefore the subsequence a(0), ..., a(2^(k-1)-1), a(2^(k-1)), ..., a(2^k-1) is identical to the subsequence a(2^k+2^(k-1)), ..., a(2^(k+1)-1), a(2^(k+1)), ..., a(2^(k+1)+2^(k-1)-1), QED.
According to the German chess rules of 1929 a game of chess was drawn if the same sequence of moves was repeated three times consecutively. Euwe, see the references, proved that this rule could lead to infinite games. For his proof he reinvented the Thue-Morse sequence. - Johannes W. Meijer, Feb 04 2010
"Thue-Morse 0->01 & 1->10, at each stage append the previous with its complement. Start with 0, 1, 2, 3 and write them in binary. Next calculate the sum of the digits (mod 2) - that is divide the sum by 2 and use the remainder." Pickover, The Math Book.
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence, then prod(n >= 0, ((2*n+1)/(2*n+2))^epsilon(n) ) = 1/sqrt(2). - Jonathan Vos Post, Jun 06 2012
Dekking shows that the constant obtained by interpreting this sequence as a binary expansion is transcendental; see also "The Ubiquitous Prouhet-Thue-Morse Sequence". - Charles R Greathouse IV, Jul 23 2013
Drmota, Mauduit, and Rivat proved that the subsequence a(n^2) is normal--see A228039. - Jonathan Sondow, Sep 03 2013
Although the probability of a 0 or 1 is equal, guesses predicated on the latest bit seen produce a correct match 2 out of 3 times. - Bill McEachen, Mar 13 2015
From a(0) to a(2n+1), there are n+1 terms equal to 0 and n+1 terms equal to 1 (see Hassan Tarfaoui link, Concours Général 1990). - Bernard Schott, Jan 21 2022
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 15.
Jason Bell, Michael Coons, and Eric Rowland, "The Rational-Transcendental Dichotomy of Mahler Functions", Journal of Integer Sequences, Vol. 16 (2013), #13.2.10.
J. Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228.
B. Bollobas, The Art of Mathematics: Coffee Time in Memphis, Cambridge, 2006, p. 224.
S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Math., 24 (1989), 83-96. doi:10.1016/0166-218X(92)90274-E.
Yann Bugeaud and Guo-Niu Han, A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence, Electronic Journal of Combinatorics 21(3) (2014), #P3.26.
Y. Bugeaud and M. Queffélec, On Rational Approximation of the Binary Thue-Morse-Mahler Number, Journal of Integer Sequences, 16 (2013), #13.2.3.
Currie, James D. "Non-repetitive words: Ages and essences." Combinatorica 16.1 (1996): 19-40
Colin Defant, Anti-Power Prefixes of the Thue-Morse Word, Journal of Combinatorics, 24(1) (2017), #P1.32
F. M. Dekking, Transcendance du nombre de Thue-Morse, Comptes Rendus de l'Academie des Sciences de Paris 285 (1977), pp. 157-160.
F. M. Dekking, On repetitions of blocks in binary sequences. J. Combinatorial Theory Ser. A 20 (1976), no. 3, pp. 292-299. MR0429728(55 #2739)
Dekking, Michel, Michel Mendès France, and Alf van der Poorten. "Folds." The Mathematical Intelligencer, 4.3 (1982): 130-138 & front cover, and 4:4 (1982): 173-181 (printed in two parts).
Dubickas, Artūras. On a sequence related to that of Thue-Morse and its applications. Discrete Math. 307 (2007), no. 9-10, 1082--1093. MR2292537 (2008b:11086).
Fabien Durand, Julien Leroy, and Gwenaël Richomme, "Do the Properties of an S-adic Representation Determine Factor Complexity?", Journal of Integer Sequences, Vol. 16 (2013), #13.2.6.
M. Euwe, Mengentheoretische Betrachtungen Über das Schachspiel, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Vol. 32 (5): 633-642, 1929.
S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.8.
W. H. Gottschalk and G. A. Hedlund, Topological Dynamics. American Mathematical Society, Colloquium Publications, Vol. 36, Providence, RI, 1955, p. 105.
J. Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429.
A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159.
Mari Huova and Juhani Karhumäki, "On Unavoidability of k-abelian Squares in Pure Morphic Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.9.
B. Kitchens, Review of "Computational Ergodic Theory" by G. H. Choe, Bull. Amer. Math. Soc., 44 (2007), 147-155.
Le Breton, Xavier, Linear independence of automatic formal power series. Discrete Math. 306 (2006), no. 15, 1776-1780.
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 23.
Donald MacMurray, A mathematician gives an hour to chess, Chess Review 6 (No. 10, 1938), 238. [Discusses Marston's 1938 article]
Mauduit, Christian. Multiplicative properties of the Thue-Morse sequence. Period. Math. Hungar. 43 (2001), no. 1-2, 137--153. MR1830572 (2002i:11081)
C. A. Pickover, Wonders of Numbers, Adventures in Mathematics, Mind and Meaning, Chapter 17, 'The Pipes of Papua,' Oxford University Press, Oxford, England, 2000, pages 34-38.
C. A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 316.
Narad Rampersad and Elise Vaslet, "On Highly Repetitive and Power Free Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.7.
G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, J. London Math. Soc. 83(1) (2011) 79-95.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
M. Rigo, P. Salimov, and E. Vandomme, "Some Properties of Abelian Return Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
Benoit Rittaud, Elise Janvresse, Emmanuel Lesigne and Jean-Christophe Novelli, Quand les maths se font discrètes, Le Pommier, 2008 (ISBN 978-2-7465-0370-0).
A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville, MD, 1981, p. 6.
Shallit, J. O. "On Infinite Products Associated with Sums of Digits." J. Number Th. 21, 128-134, 1985.
Ian Stewart, "Feedback", Mathematical Recreations Column, Scientific American, 274 (No. 3, 1996), page 109 [Historical notes on this sequence]
Thomas Stoll, On digital blocks of polynomial values and extractions in the Rudin-Shapiro sequence, RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2016, 50, pp. 93-99. <hal-01278708>.
A. Thue. Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, No. 7 (1906), 1-22.
A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, 1 (1912), 1-67.
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 890.
LINKS
A. G. M. Ahmed, AA Weaving. In: Proceedings of Bridges 2013: Mathematics, Music, Art, ..., 2013.
A. Aksenov, The Newman phenomenon and Lucas sequence, arXiv preprint arXiv:1108.5352 [math.NT], 2011-2012.
Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
J.-P. Allouche, Series and infinite products related to binary expansions of integers, Behaviour, 4.4 (1992): p. 5.
J.-P. Allouche, Lecture notes on automatic sequences, Krakow October 2013.
J.-P. Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388.
Jean-Paul Allouche, On the morphism 1 -> 121, 2 -> 12221, CNRS France, 2024. See p. 3.
Jean-Paul Allouche, On the morphism 1 -> 121, 2 -> 12221, Preprint, 2024 [Local copy, with permission]
J.-P. Allouche, Andre Arnold, Jean Berstel, Srecko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, A relative of the Thue-Morse sequence, Discrete Math., 139 (1995), 455-461.
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit and Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
J.-P. Allouche and H. Cohen, Dirichlet Series and Curious Infinite Products, Bull. London Math. Soc. 17, 531-538, 1985.
J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - N. J. A. Sloane, Feb 19 2025]
J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from N. J. A. Sloane, Feb 19 2025]
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11.
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. [Local copy]
J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence, in C. Ding. T. Helleseth and H. Niederreiter, eds., Sequences and Their Applications: Proceedings of SETA '98, Springer-Verlag, 1999, pp. 1-16.
J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II, Theoretical Computer Science 307.1 (2003): 3-29. doi:10.1016/S0304-3975(03)00090-2
Jorge Almeida and Ondrej Klíma, Binary patterns in the Prouhet-Thue-Morse sequence, arXiv:1904.07137 [math.CO], 2019.
G. N. Arzhantseva, C. H. Cashen, D. Gruber and D. Hume, Contracting geodesics in infinitely presented graphical small cancellation groups, arXiv preprint arXiv:1602.03767 [math.GR], 2016-2018.
Ricardo Astudillo, On a Class of Thue-Morse Type Sequences, J. Integer Seqs., Vol. 6, 2003.
F. Axel et al., Vibrational modes in a one dimensional "quasi-alloy": the Morse case, J. de Physique, Colloq. C3, Supp. to No. 7, Vol. 47 (Jul 1986), pp. C3-181-C3-186; see Eq. (10).
M. Baake, U. Grimm and J. Nilsson, Scaling of the Thue-Morse diffraction measure, arXiv preprint arXiv:1311.4371 [math-ph], 2013.
Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
Lucilla Baldini and Josef Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750 [math.CO], 2016. See Example 3.11.
J. Berstel, Axel Thue's papers on repetitions in words: a translation, July 21 1994. Publications du LaCIM, Département de mathématiques et d'informatique 20, Université du Québec à Montréal, 1995, 85 pages. [Cached copy]
J.-F. Bertazzon, Resolution of an integral equation with the Thue-Morse sequence, arXiv:1201.2502v1 [math.CO], Jan 12, 2012.
J. Cooper and A. Dutle, Greedy Galois Games, Amer. Math. Mnthly, 120 (2013), 441-451.
Françoise Dejean, Sur un Théorème de Thue, J. Combinatorial Theory, vol. 13 A, iss. 1 (1972) 90-99.
F. Michel Dekking, Morphisms, Symbolic sequences, and their Standard Forms, arXiv:1509.00260 [math.CO], 2015.
F. M. Dekking, The Thue-Morse Sequence in Base 3/2, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoret. Comput. Sci. 63 (1989), 333-348.
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
M. Drmota, C. Mauduit and J. Rivat, The Thue-Morse Sequence Along The Squares is Normal, Abstract, ÖMG-DMV Congress, 2013.
Arthur Dolgopolov, Equitable Sequencing and Allocation Under Uncertainty, Preprint, 2016.
J. Endrullis, D. Hendriks and J. W. Klop, Degrees of streams, Journal of Integers B 11 (2011): 1-40..
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
Hao Fu and G.-N. Han, Computer assisted proof for Apwenian sequences related to Hankel determinants, arXiv preprint arXiv:1601.04370 [math.NT], 2016.
Maciej Gawro and Maciej Ulas, "On formal inverse of the Prouhet-Thue-Morse sequence." Discrete Mathematics 339.5 (2016): 1459-1470. Also arXiv:1601.04840, 2016.
Daniel Goc, Luke Schaeffer and Jeffrey Shallit, The Subword Complexity of k-Automatic Sequences is k-Synchronized, arXiv 1206.5352 [cs.FL], Jun 28 2012.
G. A. Hedlund, Remarks on the work of Axel Thue on sequences, Nordisk Mat. Tid., 15 (1967), 148-150.
Dimitri Hendriks, Frits G. W. Dannenberg, Jorg Endrullis, Mark Dow and Jan Willem Klop, Arithmetic Self-Similarity of Infinite Sequences, arXiv preprint 1201.3786 [math.CO], 2012.
A. M. Hinz, S. Klavžar, U. Milutinović and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 79. Website for book
Denis Janković, Rémi Pasquier, Jean-Gabriel Hartmann, and Paul-Antoine Hervieux, Elucidating the Physical and Mathematical Properties of the Prouhet-Thue-Morse Sequence in Quantum Computing, arXiv:2501.09610 [quant-ph], 2025. See p. 17.
Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193 [math.CO], 2014.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
Naoki Kobayashi, Kazutaka Matsuda and Ayumi Shinohara, Functional Programs as Compressed Data, Higher-Order and Symbolic Computation, 25, no. 1 (2012): 39-84..
Philip Lafrance, Narad Rampersad and Randy Yee, Some properties of a Rudin-Shapiro-like sequence, arXiv:1408.2277 [math.CO], 2014.
C. Mauduit and J. Rivat, La somme des chiffres des carrés, Acta Mathem. 203 (1) (2009) 107-148.
Harold Marston Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100.
F. Mignosi, A. Restivo, and M. Sciortino, Words and forbidden factors, WORDS (Rouen, 1999). Theoret. Comput. Sci. 273 (2002), no. 1-2, 99--117. MR1872445 (2002m:68096).
Marston Morse, A solution of the problem of infinite play in chess, (review), Bull. Amer. Math. Soc., 44 (No. 9, 1938), p. 632. [Mentions an application to chess]
K. Nakano, Shall We Juggle, Coinductively?, in Certified Programs and Proofs, Lecture Notes in Computer Science Volume 7679, 2012, pp. 160-172.
Hieu D. Nguyen, A mixing of Prouhet-Thue-Morse sequences and Rademacher functions, arXiv preprint arXiv:1405.6958 [math.NT], 2014.
Hieu D. Nguyen, A Generalization of the Digital Binomial Theorem , J. Int. Seq. 18 (2015) # 15.5.7.
C. D. Offner, Repetitions of Words and the Thue-Morse sequence. Preprint, no date.
Matt Parker, The Fairest Sharing Sequence Ever, YouTube video, Nov 27 2015
A. Parreau, M. Rigo, E. Rowland and E. Vandomme, A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences, arXiv preprint arXiv:1405.3532 [cs.FL], 2014.
C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
Saúl Pilatowsky-Cameo, Soonwon Choi, and Wen Wei Ho, Critically slow Hilbert-space ergodicity in quantum morphic drives, arXiv:2502.06936 [quant-ph], 2025. See pp. 6, 15.
E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres, Comptes Rendus Acad. des Sciences, 33 (No. 8, 1851), p. 225. [Said to implicitly mention this sequence]
Michel Rigo, Relations on words, arXiv preprint arXiv:1602.03364 [cs.FL], 2016.
Luke Schaeffer and Jeffrey Shallit, Closed, Palindromic, Rich, Privileged, Trapezoidal, and Balanced Words in Automatic Sequences, Electronic Journal of Combinatorics 23(1) (2016), #P1.25.
M. R. Schroeder & N. J. A. Sloane, Correspondence, 1991
R. Schroeppel and R. W. Gosper, HACKMEM #122 (1972).
Vladimir Shevelev, Two analogs of Thue-Morse sequence, arXiv preprint arXiv:1603.04434 [math.NT], 2016-2017.
L. Spiegelhofer, Normality of the Thue-Morse Sequence along Piatetski-Shapiro sequences, Quart. J. Math. 66 (3) (2015).
Hassan Tarfaoui, Concours Général 1990 - Exercice 1 (in French).
Eric Weisstein's World of Mathematics, Thue-Morse Sequence
Eric Weisstein's World of Mathematics, Thue-Morse Constant
Eric Weisstein's World of Mathematics, Parity
Joost Winter, Marcello M. Bonsangue, and Jan J. M. M. Rutten, Context-free coalgebras, Journal of Computer and System Sciences, 81.5 (2015): 911-939.
Hans Zantema, Complexity of Automatic Sequences, International Conference on Language and Automata Theory and Applications (LATA 2020): Language and Automata Theory and Applications, 260-271.
FORMULA
a(2n) = a(n), a(2n+1) = 1 - a(n), a(0) = 0. Also, a(k+2^m) = 1 - a(k) if 0 <= k < 2^m.
If n = Sum b_i*2^i is the binary expansion of n then a(n) = Sum b_i (mod 2).
Let S(0) = 0 and for k >= 1, construct S(k) from S(k-1) by mapping 0 -> 01 and 1 -> 10; sequence is S(infinity).
G.f.: (1/(1 - x) - Product_{k >= 0} (1 - x^(2^k)))/2. - Benoit Cloitre, Apr 23 2003
a(0) = 0, a(n) = (n + a(floor(n/2))) mod 2; also a(0) = 0, a(n) = (n - a(floor(n/2))) mod 2. - Benoit Cloitre, Dec 10 2003
a(n) = -1 + (Sum_{k=0..n} binomial(n,k) mod 2) mod 3 = -1 + A001316(n) mod 3. - Benoit Cloitre, May 09 2004
Let b(1) = 1 and b(n) = b(ceiling(n/2)) - b(floor(n/2)) then a(n-1) = (1/2)*(1 - b(2n-1)). - Benoit Cloitre, Apr 26 2005
a(n) = 1 - A010059(n) = A001285(n) - 1. - Ralf Stephan, Jun 20 2003
a(n) = A001969(n) - 2n. - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A115384(n) - A115384(n-1) for n > 0. - Reinhard Zumkeller, Aug 26 2007
For n >= 0, a(A004760(n+1)) = 1 - a(n). - Vladimir Shevelev, Apr 25 2009
a(A160217(n)) = 1 - a(n). - Vladimir Shevelev, May 05 2009
a(n) == A000069(n) (mod 2). - Robert G. Wilson v, Jan 18 2012
a(n) = A000035(A000120(n)). - Omar E. Pol, Oct 26 2013
a(n) = A000035(A193231(n)). - Antti Karttunen, Dec 27 2013
a(n) + A181155(n-1) = 2n for n >= 1. - Clark Kimberling, Oct 06 2014
G.f. A(x) satisfies: A(x) = x / (1 - x^2) + (1 - x) * A(x^2). - Ilya Gutkovskiy, Jul 29 2021
From Bernard Schott, Jan 21 2022: (Start)
a(n) = a(n*2^k) for k >= 0.
a((2^m-1)^2) = (1-(-1)^m)/2 (see Hassan Tarfaoui link, Concours Général 1990). (End)
EXAMPLE
The evolution starting at 0 is:
0
0, 1
0, 1, 1, 0
0, 1, 1, 0, 1, 0, 0, 1
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
.......
A_2 = 0 1 1 0, so B_2 = 1 0 0 1 and A_3 = A_2 B_2 = 0 1 1 0 1 0 0 1.
From Joerg Arndt, Mar 12 2013: (Start)
The first steps of the iterated substitution are
Start: 0
Rules:
0 --> 01
1 --> 10
-------------
0: (#=1)
0
1: (#=2)
01
2: (#=4)
0110
3: (#=8)
01101001
4: (#=16)
0110100110010110
5: (#=32)
01101001100101101001011001101001
6: (#=64)
0110100110010110100101100110100110010110011010010110100110010110
(End)
From Omar E. Pol, Oct 28 2013: (Start)
Written as an irregular triangle in which row lengths is A011782, the sequence begins:
0;
1;
1,0;
1,0,0,1;
1,0,0,1,0,1,1,0;
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1;
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0;
It appears that: row j lists the first A011782(j) terms of A010059, with j >= 0; row sums give A166444 which is also 0 together with A011782; right border gives A000035.
(End)
MAPLE
s := proc(k) local i, ans; ans := [ 0, 1 ]; for i from 0 to k do ans := [ op(ans), op(map(n->(n+1) mod 2, ans)) ] od; return ans; end; t1 := s(6); A010060 := n->t1[n]; # s(k) gives first 2^(k+2) terms.
a := proc(k) b := [0]: for n from 1 to k do b := subs({0=[0, 1], 1=[1, 0]}, b) od: b; end; # a(k), after the removal of the brackets, gives the first 2^k terms. # Example: a(3); gives [[[[0, 1], [1, 0]], [[1, 0], [0, 1]]]]
A010060:=proc(n)
add(i, i=convert(n, base, 2)) mod 2 ;
end proc:
seq(A010060(n), n=0..104); # Emeric Deutsch, Mar 19 2005
map(`-`, convert(StringTools[ThueMorse](1000), bytes), 48); # Robert Israel, Sep 22 2014
MATHEMATICA
Table[ If[ OddQ[ Count[ IntegerDigits[n, 2], 1]], 1, 0], {n, 0, 100}];
mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt] ], {n, 0, 6} ]; Prepend[ RealDigits[ N[ ToExpression[mt], 2^7] ] [ [1] ], 0]
Mod[ Count[ #, 1 ]& /@Table[ IntegerDigits[ i, 2 ], {i, 0, 2^7 - 1} ], 2 ] (* Harlan J. Brothers, Feb 05 2005 *)
Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 7] (* Robert G. Wilson v Sep 26 2006 *)
a[n_] := If[n == 0, 0, If[Mod[n, 2] == 0, a[n/2], 1 - a[(n - 1)/2]]] (* Ben Branman, Oct 22 2010 *)
a[n_] := Mod[Length[FixedPointList[BitAnd[#, # - 1] &, n]], 2] (* Jan Mangaldan, Jul 23 2015 *)
Table[2/3 (1 - Cos[Pi/3 (n - Sum[(-1)^Binomial[n, k], {k, 1, n}])]), {n, 0, 100}] (* or, for version 10.2 or higher *) Table[ThueMorse[n], {n, 0, 100}] (* Vladimir Reshetnikov, May 06 2016 *)
ThueMorse[Range[0, 100]] (* The program uses the ThueMorse function from Mathematica version 11 *) (* Harvey P. Dale, Aug 11 2016 *)
Nest[Join[#, 1 - #] &, {0}, 7] (* Paolo Xausa, Oct 25 2024 *)
PROG
(Haskell)
a010060 n = a010060_list !! n
a010060_list =
0 : interleave (complement a010060_list) (tail a010060_list)
where complement = map (1 - )
interleave (x:xs) ys = x : interleave ys xs
-- Doug McIlroy (doug(AT)cs.dartmouth.edu), Jun 29 2003
-- Edited by Reinhard Zumkeller, Oct 03 2012
(PARI) a(n)=if(n<1, 0, sum(k=0, length(binary(n))-1, bittest(n, k))%2)
(PARI) a(n)=if(n<1, 0, subst(Pol(binary(n)), x, 1)%2)
(PARI) default(realprecision, 6100); x=0.0; m=20080; for (n=1, m-1, x=x+x; x=x+sum(k=0, length(binary(n))-1, bittest(n, k))%2); x=2*x/2^m; for (n=0, 20000, d=floor(x); x=(x-d)*2; write("b010060.txt", n, " ", d)); \\ Harry J. Smith, Apr 28 2009
(PARI) a(n)=hammingweight(n)%2 \\ Charles R Greathouse IV, Mar 22 2013
(Python)
A010060_list = [0]
for _ in range(14):
A010060_list += [1-d for d in A010060_list] # Chai Wah Wu, Mar 04 2016
(Python)
def A010060(n): return n.bit_count()&1 # Chai Wah Wu, Mar 01 2023
(R)
maxrow <- 8 # by choice
b01 <- 1
for(m in 0:maxrow) for(k in 0:(2^m-1)){
b01[2^(m+1)+ k] <- b01[2^m+k]
b01[2^(m+1)+2^m+k] <- 1-b01[2^m+k]
}
(b01 <- c(0, b01))
# Yosu Yurramendi, Apr 10 2017
CROSSREFS
Cf. A001285 (for 1, 2 version), A010059 (for 1, 0 version), A106400 (for +1, -1 version), A048707. A010060(n)=A000120(n) mod 2.
Cf. A007413, A080813, A080814, A036581, A108694. See also the Thue (or Roth) constant A014578, also A014571.
Run lengths give A026465. Backward first differences give A029883.
Cf. A004128, A053838, A059448, A171900, A161916, A214212, A005942 (subword complexity), A010693 (Abelian complexity), A225186 (squares), A228039 (a(n^2)), A282317.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
KEYWORD
nonn,core,easy,nice
STATUS
approved
Period 2: repeat [1, 2]; a(n) = 1 + (n mod 2).
(Formerly M0089)
+10
139
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
OFFSET
0,2
COMMENTS
Also continued fraction for (sqrt(3)+1)/2 (cf. A040001) and base-3 digital root of n+1 (cf. A007089, A010888). - Henry Bottomley, Jul 05 2001
The sequence 1,-2,-1,2,1,-2,-1,2,... with g.f. (1-2x)/(1+x^2) has a(n) = cos(Pi*n/2)-2*sin(Pi*n/2). - Paul Barry, Oct 18 2004
Hankel transform is [1,-3,0,0,0,0,0,0,0,...]. - Philippe Deléham, Mar 29 2007
4/33 = 0.121212... - Eric Desbiaux, Nov 03 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1) = charpoly(A,2). - Milan Janjic, Jan 24 2010
First differences of A032766. - Tom Edgar, Jul 17 2014
Denominator of the harmonic mean of the first n triangular numbers. - Colin Barker, Nov 13 2014
This is the lexicographically earliest sequence of positive integers such that no polynomial of degree d can be fitted to d+2 consecutive terms (equivalently, such that no iterated difference is zero). - Pontus von Brömssen, Dec 26 2021 [See A300002 for the case where not only consecutive terms are considered. - Pontus von Brömssen, Jan 03 2023]
Number of maximum antichains in the power set of {1,2,...,n} partially ordered by set inclusion. For even n, there is a unique maximum antichain formed by all subsets of size n/2; for odd n, there are two maximum antichains, one formed by all subsets of size (n-1)/2 and the other formed by all subsets of size (n+1)/2. See the David Guichard link below for a proof. - Jianing Song, Jun 19 2022
REFERENCES
Jozsef Beck, Combinatorial Games, Cambridge University Press, 2008.
J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 545 pages 73 and 260, Ellipses, Paris 2004.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida and Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
David Guichard, Sperner's Theorem
Agustín Moreno Cañadas, Hernán Giraldo and Robinson Julian Serna Vanegas, Some integer partitions induced by orbits of Dynkin type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 12 (2017), pp. 2745-2766.
FORMULA
G.f.: (1+2*x)/(1-x^2).
a(n) = 2^((1-(-1)^n)/2) = 2^(ceiling(n/2) - floor(n/2)). - Paul Barry, Jun 03 2003
a(n) = (3-(-1)^n)/2; a(n) = 1 + (n mod 2) = 3-a(n-1) = a(n-2) = a(-n).
a(n) = gcd(n-1, n+1). - Paul Barry, Sep 16 2004
Binomial transform of A123344, inverse binomial transform of A003945. - Philippe Deléham, Jun 04 2007
a(n) = A134451(n+1). - Reinhard Zumkeller, Oct 27 2007
a(n) = if(n=0,1,if(mod(a(n-1),2)=0,a(n-1)/2,(3*a(n-1)+1)/2)). See Collatz conjecture. - Paul Barry, Mar 31 2008
a(n) = 2^n (mod 3). - Vincenzo Librandi, Feb 05 2011
a(n) = A000035(n) + 1. - M. F. Hasler, Jan 13 2012
a(n) = abs(sin(n*Pi/2) - 2*cos(n*Pi/2)). - Mohammad K. Azarian, Mar 12 2012
a(n) = A010704(n) / 3. - Reinhard Zumkeller, Jul 03 2012
a(n) = floor((4/33)*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = floor((5/8)*3^(n+1)) mod 3. - Hieronymus Fischer, Jan 03 2013
a(n) = floor((n+1)*3/2) - floor((n)*3/2). - Hailey R. Olafson, Jul 23 2014
a(n) = denominator(n/2). - Wesley Ivan Hurt, Sep 11 2014
Dirichlet g.f.: zeta(s)*(1 + 1/2^s). - Mats Granvik, Jul 18 2016
E.g.f.: 2*sinh(x) + cosh(x). - Ilya Gutkovskiy, Jul 18 2016
a(n) = A010693(n) - 1. - Filip Zaludek, Oct 29 2016
a(n) = n + 1 - 2*floor(n/2). - Lorenzo Sauras Altuzarra, Jun 28 2019
Limit_{n->oo} (1/n)*Sum_{k=1..n} a(k) = 3/2 (De Koninck reference). - Bernard Schott, Nov 09 2021
MAPLE
(1+2*x)/(1-x^2);
A000034 := proc(n) op((n mod 2)+1, [1, 2]) ; end proc: # R. J. Mathar, Feb 05 2011
MATHEMATICA
a[n_] := If[OddQ[n], 2, 1]; Table[a[n], {n, 0, 90}] (* Stefan Steinerberger, Apr 17 2006 *)
Nest[ Flatten[# /. { 0 -> {1}, 1 -> {2}, 2 -> {1, 2, 1} }] &, {1}, 8] (* Robert G. Wilson v, May 20 2014 *)
PROG
(PARI) a(n)=1+n%2
(PARI) a(n)=1+bittest(n, 0) \\ M. F. Hasler, Jan 13 2012
(Haskell)
a000034 = (+ 1) . (`mod` 2)
a000034_list = cycle [1, 2]
-- Reinhard Zumkeller, Jul 03 2012, Dec 02 2011 and corrected by James Spahlinger, Oct 08 2012
(Magma) [1+(n mod 2) : n in [0..100]]; // Wesley Ivan Hurt, Sep 11 2014
(GAP) List([0..120], n->1+(n mod 2)); # Muniru A Asiru, Feb 01 2019
(Python)
def A000034(n): return 1 + (n & 1) # Chai Wah Wu, May 25 2022
CROSSREFS
Cf. sequences listed in Comments section of A283393.
KEYWORD
nonn,easy
EXTENSIONS
Better definition from M. F. Hasler, Jan 13 2012
STATUS
approved
Numbers that are congruent to {0, 2} mod 5.
+10
35
0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157
OFFSET
0,2
COMMENTS
Number of partitions of 5n into exactly 2 parts. - Colin Barker, Mar 23 2015
Numbers k such that k^2/5 + k*(k + 1)/5 = k*(2*k + 1)/5 is a nonnegative integer. - Bruno Berselli, Feb 14 2017
FORMULA
a(n) = floor(5*n/2).
From R. J. Mathar, Sep 23 2008: (Start)
G.f.: x*(2 + 3*x)/((1 + x)*(1 - x)^2).
a(n) = 5*n/2 + ((-1)^n-1)/4.
a(n+1) - a(n) = A010693(n+1). (End)
a(n) = 5*n - a(n-1) - 8 with a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A084215(k+1). - Philippe Deléham, Oct 17 2011
a(n) = 2*n + floor(n/2). - Arkadiusz Wesolowski, Sep 19 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 - sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: (5*x*exp(x) - sinh(x))/2. - David Lovler, Aug 22 2022
MATHEMATICA
Table[Floor[5 n/2], {n, 0, 100}] (* or *) LinearRecurrence[{1, 1, -1}, {0, 2, 5}, 101] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
PROG
(PARI) a(n)=5*n\2 \\ Charles R Greathouse IV, Oct 17 2011
(Magma) [(5*n - (n mod 2))/2: n in [1..100]]; // G. C. Greubel, Jun 23 2024
(SageMath) [int(5*n//2) for n in range(1, 101)] # G. C. Greubel, Jun 23 2024
CROSSREFS
Different from A038126.
Cf. A249547 (partial sums), A010693 (1st differences).
KEYWORD
nonn,easy
STATUS
approved
Periodic sequence: Repeat 3, 2.
+10
22
3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
OFFSET
0,1
COMMENTS
Interleaving of A010701 and A007395.
Also continued fraction expansion of (3+sqrt(15))/2.
Also decimal expansion of 32/99.
a(n) = A010693(n+1).
Essentially first differences of A047218.
Binomial transform of 3 followed by -A122803.
Inverse binomial transform of 3 followed by A020714.
Second inverse binomial transform of A057198 without initial term 1.
FORMULA
a(n) = (5+(-1)^n)/2.
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 2.
a(n) = -a(n-1)+5 for n > 0; a(0) = 3.
a(n) = 3*((n+1) mod 2)+2*(n mod 2).
G.f.: (3+2*x)/((1-x)*(1+x)).
MAPLE
A176059:=n->(5+(-1)^n)/2; seq(A176059(n), n=0..100); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
a[n_] := {3, 2}[[Mod[n, 2] + 1]]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jul 19 2013 *)
PadRight[{}, 120, {3, 2}] (* Harvey P. Dale, Oct 06 2019 *)
PROG
(Magma) &cat[ [3, 2]: n in [0..52] ];
[ (5+(-1)^n)/2: n in [0..104] ];
(Haskell)
a176059 = (3 -) . (`mod` 2) -- Reinhard Zumkeller, Nov 27 2012
(Haskell)
a176059_list = cycle [3, 2] -- Reinhard Zumkeller, Apr 04 2012
(PARI) a(n)=3-n%2 \\ Charles R Greathouse IV, Jul 13 2016
CROSSREFS
Cf. A010701 (all 3's sequence), A007395 (all 2's sequence), A176058 (decimal expansion of (3+sqrt(15))/2), A010693 (repeat 2, 3), A047218 (congruent to {0, 3} mod 5), A122803 (powers of -2), A020714 (5*2^n), A057198 ((5*3^(n-1)+1)/2, n > 0).
Cf. A026532 (partial products).
KEYWORD
cofr,cons,nonn,easy
AUTHOR
Klaus Brockhaus, Apr 07 2010
STATUS
approved
Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, ...
+10
17
1, 2, 6, 12, 36, 72, 216, 432, 1296, 2592, 7776, 15552, 46656, 93312, 279936, 559872, 1679616, 3359232, 10077696, 20155392, 60466176, 120932352, 362797056, 725594112, 2176782336, 4353564672, 13060694016, 26121388032, 78364164096, 156728328192, 470184984576, 940369969152
OFFSET
0,2
COMMENTS
Appears to be the number of permutations p of {1,2,...,n} such that p(i)+p(i+1)>=n for every i=1,2,...,n-1 (if offset is 1). - Vladeta Jovovic, Dec 15 2003
Equals eigensequence of a triangle with 1's in even columns and (1,3,3,3,...) in odd columns. a(5) = 72 = (1, 3, 1, 3, 1, 1) dot (1, 1, 2, 6, 12, 36) = (1 + 3 + 2 + 18 + 12 + 36), where (1, 3, 1, 3, 1, 1) = row 5 of the generating triangle. - Gary W. Adamson, Aug 02 2010
Partial products of A010693. - Reinhard Zumkeller, Mar 29 2012
Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017
For n >= 2, a(n) is the least k > a(n-1) such that both k and a(n-2) + a(n-1) + k have exactly n prime factors, counted with multiplicity. - Robert Israel, Aug 06 2024
REFERENCES
Arno Berger and Theodore P. Hill, An Introduction to Benford's Law, Princeton University Press, 2015.
LINKS
Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, International Journal of Combinatorics, Vol. 2014 (2014), Article ID 301394, 7 pages; arXiv preprint, arXiv:1312.0583 [math.CO], 2013.
FORMULA
Equals T(n, 0) + T(n, 1) + ... + T(n, 2n), T given by A026536.
a(n) = 2*A026532(n), for n > 0.
G.f.: (1+2*x)/(1-6*x^2) - Paul Barry, Aug 25 2003
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*(3 - (-1)^n)*6^floor(n/2), or a(n) = 6*a(n-2). - Vincenzo Librandi, Jun 08 2011
a(n) = 1/a(-n) if n is even and (2/3)/a(-n) if n is odd for all n in Z. - Michael Somos, Apr 09 2022
Sum_{n>=0} 1/a(n) = 9/5. - Amiram Eldar, Feb 13 2023
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 36*x^4 + 72*x^5 + 216*x^6 + ... - Michael Somos, Apr 09 2022
MAPLE
seq(seq(2^i*3^j, i=j..j+1), j=0..30); # Robert Israel, Aug 06 2024
MATHEMATICA
LinearRecurrence[{0, 6}, {1, 2}, 30] (* Harvey P. Dale, May 29 2016 *)
PROG
(Magma) [(1/2)*(3-(-1)^n)*6^Floor(n/2): n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
(Haskell)
a026549 n = a026549_list !! n
a026549_list = scanl (*) 1 $ a010693_list
-- Reinhard Zumkeller, Mar 29 2012
(SageMath) [(1+(n%2))*6^(n//2) for n in (0..30)] # G. C. Greubel, Apr 09 2022
(PARI) {a(n) = 6^(n\2) * (n%2+1)}; /* Michael Somos, Apr 09 2022 */
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
New definition from Ralf Stephan, Dec 01 2004
STATUS
approved
Multiples of 2 and of 3 interleaved: a(2n-1) = 2n, a(2n) = 3n.
+10
13
2, 3, 4, 6, 6, 9, 8, 12, 10, 15, 12, 18, 14, 21, 16, 24, 18, 27, 20, 30, 22, 33, 24, 36, 26, 39, 28, 42, 30, 45, 32, 48, 34, 51, 36, 54, 38, 57, 40, 60, 42, 63, 44, 66, 46, 69, 48, 72, 50, 75, 52, 78, 54, 81, 56, 84, 58, 87, 60, 90, 62, 93, 64, 96, 66, 99, 68, 102
OFFSET
1,1
COMMENTS
First differences of A195014.
LINKS
D. H. Bailey, J. M. Borwein, and J. S. Kimberley, Discovery of large Poisson polynomials using a new arbitrary precision software package, Slides, 2015.
D. H. Bailey, J. M. Borwein, and J. S. Kimberley, Computer discovery and analysis of large Poisson polynomials, 2016.
FORMULA
Pair(2*n, 3*n).
From Bruno Berselli, Sep 26 2011: (Start)
G.f.: x*(2+3*x)/(1-x^2)^2.
a(n) = (5*n+(n-2)*(-1)^n+2)/4.
a(n) = 2*a(n-2) - a(n-4) = a(n-2) + A010693(n-1).
a(n)+a(-n) = A010673(n).
a(n)-a(-n) = A106832(n). (End)
MATHEMATICA
With[{r = Range[50]}, Riffle[2*r, 3*r]] (* or *)
LinearRecurrence[{0, 2, 0, -1}, {2, 3, 4, 6}, 100] (* Paolo Xausa, Feb 09 2024 *)
PROG
(Magma) &cat[[2*n, 3*n]: n in [1..34]]; // Bruno Berselli, Sep 25 2011
(Haskell)
import Data.List (transpose)
a195013 n = a195013_list !! (n-1)
a195013_list = concat $ transpose [[2, 4 ..], [3, 6 ..]]
-- Reinhard Zumkeller, Apr 06 2015
(PARI) a(n)=(5*n+(n-2)*(-1)^n+2)/4 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A111712 (partial sums of this sequence prepended with 1).
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 09 2011
STATUS
approved
Number of colors needed to paint n sectors of a circle.
+10
10
0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2
OFFSET
0,3
COMMENTS
No pair of adjacent sectors can have the same color.
For n > 0: smallest prime factor of A098548(n).
Decimal expansion of 61/4950. - Elmo R. Oliveira, May 05 2024
FORMULA
G.f.: x*(1+2*x+2*x^2)/(1-x^2).
E.g.f.: 2*cosh(x) + 3*sinh(x) - 2*(1 + x). - Stefano Spezia, Mar 24 2020
a(n) = a(n-2) for n > 3. - Elmo R. Oliveira, May 05 2024
a(n) = (n mod 2) + (2 mod (n+1)). - Aaron J Grech, Sep 02 2024
MATHEMATICA
Join[Range[0, 1], ConstantArray[{2, 3}, 20]] // Flatten (* Robert Price, Jun 15 2020 *)
PROG
(PARI) a(n)=if(n<4, n, 2+n%2)
(Haskell)
a158478 n = if n < 4 then n else 2 + mod n 2
a158478_list = [0..3] ++ cycle [2, 3]
-- Reinhard Zumkeller, Nov 30 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaume Oliver Lafont, Mar 20 2009
STATUS
approved
a(n) = (3*n)^3.
+10
8
0, 27, 216, 729, 1728, 3375, 5832, 9261, 13824, 19683, 27000, 35937, 46656, 59319, 74088, 91125, 110592, 132651, 157464, 185193, 216000, 250047, 287496, 328509, 373248, 421875, 474552, 531441, 592704
OFFSET
0,2
FORMULA
From Reinhard Zumkeller, Jan 29 2009: (Start)
a(n) = 27*A000578(n).
A020639(a(n)) = A010693(n), for n>0. (End)
a(n) = A155955(n,3) for n>2. - Reinhard Zumkeller, Jan 31 2009
G.f.: 27*x*(1+4*x+x^2)/(x-1)^4 . - R. J. Mathar, Jul 07 2017
E.g.f.: 27*x*(1 + 3*x + x^2)*exp(x). - G. C. Greubel, Sep 15 2018
a(n) = -a(-n) for all n in Z. - Michael Somos, Sep 16 2018
EXAMPLE
G.f. = 27*x + 216*x^2 + 729*x^3 * 1728*x^4 + 3375*x^5 + 5832*x^6 + ... - Michael Somos, Sep 16 2018
MATHEMATICA
Table[(3*n)^3, {n, 0, 30}] (* G. C. Greubel, Sep 15 2018 *)
PROG
(Magma) [(3*n)^3: n in [0..40]]; // Vincenzo Librandi, Jul 29 2011
(PARI) a(n)=27*n^3 \\ Charles R Greathouse IV, Jul 29 2011
KEYWORD
nonn,easy
STATUS
approved
A Horadam-Jacobsthal sequence.
+10
8
0, 1, 6, 13, 30, 61, 126, 253, 510, 1021, 2046, 4093, 8190, 16381, 32766, 65533, 131070, 262141, 524286, 1048573, 2097150, 4194301, 8388606, 16777213, 33554430, 67108861, 134217726, 268435453, 536870910, 1073741821, 2147483646, 4294967293, 8589934590
OFFSET
0,3
COMMENTS
Companion sequence to A084639.
This is the sequence A(0,1;1,2;5) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
Except for the initial three terms, the decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 961", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Mar 27 2017
Named after the Australian mathematician Alwyn Francis Horadam (1923-2016) and the German mathematician Ernst Jacobsthal (1882-1965). - Amiram Eldar, Jun 10 2021
REFERENCES
Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
a(n) = (2^(n+2) + (-1)^n - 5)/2.
G.f.: x*(1+4*x)/((1-x)*(1+x)*(1-2*x)).
a(n) = (A014551(n+2)-5)/2.
(1, 6, 13, 30, 61, ...) are the row sums of A131953. - Gary W. Adamson, Jul 31 2007
From Paul Curtz, Jan 01 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) + 5.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n) = A000079(n+1) - A010693(n).
a(n+1) = A141722(n) + 5 = A141722(n) + A010716(n).
a(2n+1) - a(2n) = 1, 7, 31, ... = A083420.
a(2n+1) - 2*a(2n) = 1.
a(2n) = A002446 = 6*A002450, a(2n+1) = A141725. (End)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2. - Colin Barker, Mar 28 2017
a(n) = (1/2) * Sum_{k=1..n} binomial(n+1,k) * (2+(-1)^k). - Wesley Ivan Hurt, Sep 23 2017
MATHEMATICA
LinearRecurrence[{2, 1, -2}, {0, 1, 6}, 40] (* Harvey P. Dale, Jul 08 2014 *)
PROG
(Magma) [(2^(n+2)+(-1)^n-5)/2: n in [0..35]]; // Vincenzo Librandi, Aug 12 2011
(PARI) concat(0, Vec(x*(1+4*x)/((1-x)*(1+x)*(1-2*x)) + O(x^30))) \\ Colin Barker, Mar 28 2017
CROSSREFS
Cf. A131953.
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 10 2004
STATUS
approved

Search completed in 0.025 seconds