login
Search: a000930 -id:a000930
     Sort: relevance | references | number | modified | created      Format: long | short | data
Bisection of A000930.
(Formerly M2572 N1017)
+20
54
1, 1, 3, 6, 13, 28, 60, 129, 277, 595, 1278, 2745, 5896, 12664, 27201, 58425, 125491, 269542, 578949, 1243524, 2670964, 5736961, 12322413, 26467299, 56849086, 122106097, 262271568, 563332848, 1209982081, 2598919345, 5582216355, 11990037126, 25753389181
OFFSET
0,3
COMMENTS
Number of ways to tile a 3 X n region with 1 X 1, 2 X 2 and 3 X 3 tiles.
Number of ternary words with subwords (0,0), (0,1) and (1,1) not allowed. - Olivier Gérard, Aug 28 2012
Diagonal sums of A063967. - Paul Barry, Nov 09 2005
Row sums of number triangle A116088. - Paul Barry, Feb 04 2006
Sequence is identical to its second differences negated, minus the first 3 terms. - Paul Curtz, Feb 10 2008
a(n) = term (3,3) in the 3 X 3 matrix [0,1,0; 0,0,1; 1,2,1]^n. - Gary W. Adamson, May 30 2008
a(n)/a(n-1) tends to 2.147899035..., an eigenvalue of the matrix and a root to x^3 - x^2 - 2x - 1 = 0. - Gary W. Adamson, May 30 2008
INVERT transform of (1, 2, 1, 0, 0, 0, ...) = (1, 3, 6, 13, 28, ...); such that (1, 2, 1, 0, 0, 0, ...) convolved with (1, 1, 3, 6, 13, 28, 0, 0, 0, ...) shifts to the left. - Gary W. Adamson, Apr 18 2010
a(n) is the top left entry in the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
REFERENCES
Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 322.
S. Heubach, Tiling an m X n Area with Squares of Size up to k X k (m<=5), Congressus Numerantium 140 (1999), pp. 43-64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Emeric Deutsch, Counting tilings with L-tiles and squares, Problem 10877, Amer. Math. Monthly, 110 (March 2003), 245-246.
Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, arXiv:1907.06517 [math.CO], 2019.
Milan Janjić, Pascal Triangle and Restricted Words, arXiv:1705.02497 [math.CO], 2017.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Richard J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 19 (halved...).
Richard J. Mathar, Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards, arXiv:2404.18806 [math.CO], 2024. See p. 5.
Sam Northshield, Some generalizations of a formula of Reznick, SUNY Plattsburgh (2022).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
FORMULA
G.f.: 1 / (1-x-2*x^2-x^3). [Simon Plouffe in his 1992 dissertation.]
a(n) = a(n-1) + 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} binomial(2*n-2*k, k). - Paul Barry, Nov 13 2004
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j, n-k-j)*C(j, k). - Paul Barry, Nov 09 2005
a(n) = Sum_{k=0..n} C(2*k,n-k) = Sum_{k=0..n} C(n,k)*C(3*k,n)/C(3*k,k). - Paul Barry, Feb 04 2006
a(n) = A000930(n) + 2*Sum_{i=0..n-2} a(i)*A000930(n-2-i). - Michael Tulskikh, Jun 07 2020
EXAMPLE
a(3)=6 as there is one tiling of a 3 X 3 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 1 tiling consisting of the 3 X 3 tile.
MATHEMATICA
f[A_]:= Module[{til = A}, AppendTo[til, A[[-1]] + 2A[[-2]] + A[[-3]]]]; NumOfTilings[ n_ ]:= Nest[ f, {1, 1, 3}, n-2]; NumOfTilings[30]
LinearRecurrence[{1, 2, 1}, {1, 1, 3}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
CoefficientList[Series[1/(1-x-2x^2-x^3), {x, 0, 40}], x] (* Harvey P. Dale, Oct 17 2024 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 2, 1]^n*[1; 1; 3])[1, 1] \\ Charles R Greathouse IV, Apr 08 2016
(Magma) I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1) +2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 14 2023
(SageMath)
@CachedFunction
def a(n): # A002478
if (n<3): return (1, 1, 3)[n]
else: return sum(binomial(2, j)*a(n-j) for j in range(1, 4))
[a(n) for n in (0..40)] # G. C. Greubel, Apr 14 2023
CROSSREFS
Cf. A000930, A054856, A054857, A025234, A078007, A078039, A226546, A077936 (INVERT transform), A008346 (inverse INVERT transform).
KEYWORD
easy,nonn,nice
EXTENSIONS
Additional comments from Silvia Heubach (silvi(AT)cine.net), Apr 21 2000
STATUS
approved
3^a(n) is the highest power of 3 dividing A000930(n).
+20
4
0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 1, 3, 0, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 1, 3, 0, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 1, 4, 0, 0, 0, 0, 3, 0, 3, 4, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 1, 3, 0, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 1, 3, 0
OFFSET
0,8
COMMENTS
This is the 3-adic valuation of A000930.
LINKS
MATHEMATICA
A000930[n_] := Sum[Binomial[n - 2*i, i], {i, 0, Floor[n/3]}]; Table[IntegerExponent[A000930[n], 3], {n, 0, 100}] (* G. C. Greubel, Apr 26 2017 *)
PROG
(Magma) A000930:=func<i | &+[Binomial(i-2*k, k): k in [0..i div 3]]>; [Valuation(A000930(n), 3): n in [0..120]]; // Bruno Berselli, Aug 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 04 2013
STATUS
approved
Sequence A000930 with terms repeated.
+20
3
1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 9, 9, 13, 13, 19, 19, 28, 28, 41, 41, 60, 60, 88, 88, 129, 129, 189, 189, 277, 277, 406, 406, 595, 595, 872, 872, 1278, 1278, 1873, 1873, 2745, 2745, 4023, 4023, 5896, 5896, 8641, 8641, 12664, 12664, 18560, 18560
OFFSET
0,7
COMMENTS
The usual policy in the OEIS is not to include such "doubled" sequences. This is an exception. - N. J. A. Sloane
Based on the morphism 1->{5}, 2->{6}, 3->{4}, 4->{2}, 5->{3}, 6->{1, 6}.
LINKS
Sergio Falcon, Generalized (k,r)-Fibonacci Numbers, Gen. Math. Notes, 25(2), 2014, 148-158.
I. Wloch, U. Bednarz, D. Bród, A Wloch and M. Wolowiec-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Math., Volume 161, Issues 16-17, November 2013, Pages 2695-2701.
FORMULA
a(n) = a(n-2) + a(n-6), starting 1,1,1,1,1,1.
G.f.: (1+x)/(1-x^2-x^6).
MATHEMATICA
s[1] = {5}; s[2] = {6}; s[3] = {4}; s[4] = {2}; s[5] = {3}; s[6] = {1, 2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] a0 = Table[Length[p[i]], {i, 0, 50}]
m = 6; For[n = 0, n < m, n++, a[n] = 1]; For[n = m, n < 51, n++, a[n] = a[n - m] + a[n - 2]]; Table[a[n], {n, 0, 50}] (* Sergio Falcon, Nov 12 2015 *)
CoefficientList[Series[(1 + x) / (1 - x^2 - x^6), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 1, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1}, 60] (* Vincenzo Librandi, Jan 19 2016 *)
PROG
(PARI) x='x+O('x^55); Vec((1+x)/(1-x^2-x^6)) \\ Altug Alkan, Nov 10 2015
(Magma) I:=[1, 1, 1, 1, 1, 1]; [n le 6 select I[n] else Self(n-2)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jan 19 2016
CROSSREFS
Cf. A000930.
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 03 2005
EXTENSIONS
Edited by N. J. A. Sloane, Dec 01 2006
STATUS
approved
a(n) = A000930(n^2), where A000930 is Narayana's cows sequence.
+20
3
1, 1, 3, 19, 277, 8641, 578949, 83316385, 25753389181, 17098272199297, 24382819596721629, 74684329652984094451, 491347682599497451569523, 6943240361573523613067995729, 210741152533202801182666172606913, 13738849457010997118546333815068560833, 1923823572225984354415961546862346889944243
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^(n^2)] 1 / (1 - x - x^3) for n>=0.
MATHEMATICA
Table[SeriesCoefficient[1/(1 - x - x^3), {x, 0, n^2}], {n, 0, 25}] (* G. C. Greubel, Apr 26 2017 *)
PROG
(PARI) {a(n) = polcoeff(1/(1-x-x^3 + x*O(x^(n^2))), n^2)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 13 2013
STATUS
approved
Length of period of Narayana sequence A000930 modulo n-th prime.
+20
3
7, 8, 31, 57, 60, 168, 288, 381, 528, 840, 930, 342, 1723, 1848, 46, 468, 3541, 1240, 33, 5113, 2664, 6240, 3444, 7920, 3169, 10303, 10713, 11557, 11991, 991, 2016, 130, 6256, 1610, 148, 22800, 24807, 26733, 4648, 172, 10680, 32760, 36673, 37443, 2156, 3960, 481, 12432, 226, 26220, 54523, 8160, 9680, 63000
OFFSET
1,1
LINKS
H. T. Engstrom, On sequences defined by linear recurrence relations Trans. Am. Math. Soc. 33 (1) (1931) 210-218.
K. Kirthi, Narayana Sequences for Cryptographic Applications, arXiv preprint arXiv:1509.05745 [math.NT], 2015.
M. B. Nathanson, Linear recurrences and uniform distribution, Proc. Amer. Math. Soc. 48 (1975), 289-291.
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
FORMULA
a(n) = A271953(prime(n)). - Joerg Arndt, Apr 17 2016
MATHEMATICA
a[n_] := Module[{p = Prime[n], a = 1, b = 1, c = 2, k = 1}, While[a != 1 || b != 1 || c != 1, {a, b, c} = {b, c, Mod[a + c, p]}; k++]; k];
Array[a, 100] (* Jean-François Alcover, Jul 22 2018, after Charles R Greathouse IV *)
PROG
(Python)
from sympy import prime
def A271901(n):
p = prime(n)
i, a, b, c = 1, 1, 1, 2 % p
while a != 1 or b != 1 or c != 1:
i += 1
a, b, c = b, c, (a+c) % p
return i # Chai Wah Wu, Feb 26 2017
(PARI) a(n, p=prime(n))=my(a=1, b=1, c=2, k=1); while(a!=1 || b!=1 || c!=1, [a, b, c]=[b, c, (a+c)%p]; k++); k \\ Charles R Greathouse IV, Feb 26 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 17 2016
EXTENSIONS
a(1) corrected by Altug Alkan, Apr 17 2016
Terms a(24) and beyond from Joerg Arndt, Apr 17 2016
STATUS
approved
a(n) is the period of A000930 modulo n.
+20
3
1, 7, 8, 14, 31, 56, 57, 28, 24, 217, 60, 56, 168, 399, 248, 56, 288, 168, 381, 434, 456, 420, 528, 56, 155, 168, 72, 798, 840, 1736, 930, 112, 120, 2016, 1767, 168, 342, 2667, 168, 868, 1723, 3192, 1848, 420, 744, 3696, 46, 56, 399, 1085, 288, 168, 468, 504, 1860, 1596, 3048, 840, 3541, 1736, 1240, 6510
OFFSET
1,2
LINKS
H. T. Engstrom, On sequences defined by linear recurrence relations, Trans. Am. Math. Soc. 33 (1) (1931) 210-218.
K. Kirthi, Narayana Sequences for Cryptographic Applications, arXiv preprint arXiv:1509.05745 [math.NT], 2015.
M. B. Nathanson, Linear recurrences and uniform distribution, Proc. Amer. Math. Soc. 48 (1975), 289-291.
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
FORMULA
Let the prime factorization of n be p1^e1*...*pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)) [Engstrom]. - N. J. A. Sloane, Feb 18 2017
MATHEMATICA
minlen = 100; maxlen = 2*10^4;
per[lst_] := FindTransientRepeat[lst, 2] // Last // Length;
a[n_] := Module[{p0=0, len=minlen}, While[p0 = Mod[LinearRecurrence[{1, 0, 1}, {1, 1, 1}, len], n] // per; p0<=1 && len<=maxlen, len = 2 len]; p0];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Jul 21 2018 *)
PROG
(PARI)
per(n, S, R) = { \\ S[]: leading terms, R[]: recurrence
if ( n==1, return( 1 ) );
my ( r = #R );
if ( r != #S , error("Mismatch in length of S[] and R[]") );
S = vector(#S, j, Mod(S[j], n) );
R = vector(#S, j, Mod(R[j], n) );
my( T = S );
my( j = 0 );
until ( 0, \\ forever
j += 1;
my( t = sum(i=1, r, R[i] * T[r+1-i] ) ); \\ next term
for (k=1, r-1, T[k] = T[k+1] );
T[r] = t;
if ( T == S , return(j) );
);
}
\\vector(66, n, per(n, [0, 1], [1, 1]) ) \\ A001175
\\vector(66, n, per(prime(n), [0, 1], [1, 1]) ) \\ A060305
vector(66, n, per(n, [0, 0, 1], [1, 0, 1]) ) \\ A271953
\\vector(66, n, per(prime(n), [0, 0, 1], [1, 0, 1]) ) \\ A271901
\\vector(66, n, per(n, [0, 0, 1], [0, 1, 1]) ) \\ A104217
/* Joerg Arndt, Apr 17 2016 */
CROSSREFS
Cf. A000930, A271901 (periods mod primes), A001175 (periods of A000045 modulo n).
KEYWORD
nonn
AUTHOR
Joerg Arndt, Apr 17 2016
STATUS
approved
Triangle read by rows: each row is an initial segment of the terms of A000930 followed by its reflection.
+20
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 6, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 6, 6, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 6, 9, 6, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 6, 9, 9, 6, 4, 3, 2, 1, 1
OFFSET
1,13
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 1, 1},
{1, 1, 1, 1},
{1, 1, 2, 1, 1},
{1, 1, 2, 2, 1, 1},
{1, 1, 2, 3, 2, 1, 1},
{1, 1, 2, 3, 3, 2, 1, 1},
{1, 1, 2, 3, 4, 3, 2, 1, 1},
{1, 1, 2, 3, 4, 4, 3, 2, 1, 1},
{1, 1, 2, 3, 4, 6, 4, 3, 2, 1, 1}
MAPLE
A000930 := proc(n) coeftayl( 1/(1-x-x^3), x=0, n) ; end: A139040 := proc(n, m) A000930(min(m, n+1-m)) ; end: for n from 1 to 16 do for m from 1 to n do printf("%d, ", A139040(n, m)) ; od: od: # R. J. Mathar, Jun 08 2008
MATHEMATICA
a[-2]=0; a[-1]=1; a[0]=1; a[n_]:=a[n]=a[n-1]+a[n-3]; (*A000930*)
g[n_, m_]:=If[m <= Floor[n/2], a[m], a[n-m]]; w=Table[Table[g[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[w]
CROSSREFS
Cf. A139147, A000930. Row sums are in A238383.
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Edited and corrected by N. J. A. Sloane, Jun 30 2008
Corrected by Philippe Deléham, Feb 25 2014
STATUS
approved
Eigentriangle, row sums = A000930
+20
2
1, 1, 1, 0, 1, 2, -1, 0, 2, 3, 0, -1, 0, 3, 4, 1, 0, -2, 0, 4, 6, 0, 1, 0, -3, 0, 6, 9, -1, 0, 2, 0, -4, 0, 9, 13, 0, -1, 0, 3, 0, -6, 0, 13, 19, 1, 0, -2, 0, 4, 0, -9, 0, 19, 28
OFFSET
1,6
COMMENTS
Row sums = A000930 starting with offset 1: (1, 1, 2, 3, 4, 6, 9, 13, 19,...).
Sum of n-th row terms = rightmost term of next row.
FORMULA
Let M = an infinite lower triangular matrix with (1, 1, 0, -1, 0, 1, 0, -1, 0, 1,...) in every column; and X = an infinite lower triangular matrix with A000930 as the main diagonal (offset 1): (1, 1, 2, 3, 4, 6, 9, 13, 19,...) and the rest zeros. Triangle A145580 = M * X.
EXAMPLE
First few rows of the triangle =
1;
1, 1;
0, 1, 2;
-1, 0, 2, 3;
0, -1, 0, 3, 4;
1, 0, -2, 0, 4, 6;
0, 1, 0, -3, 0, 6, 9;
-1, 0, 2, 0, -4, 0, 9, 13;
0, -1, 0, 3, 0, -6, 0, 13, 19;
1, 0, -2, 0, 4, 0, -9, 0, 19, 28;
...
Row 6 = (1, 0, -2, 0, 4, 6) = termwise products of (1, 0, -1, 0, 1, 1) and (1, 1, 2, 3, 4, 6).
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Oct 13 2008
STATUS
approved
Indices k such that A000930(k) is prime.
+20
2
3, 4, 8, 9, 11, 16, 21, 25, 81, 6241, 25747
OFFSET
1,1
COMMENTS
a(12) > 200000. - Donovan Johnson, Mar 14 2010
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Feb 25 2010, following a question from Kyle Ledbetter
EXTENSIONS
Two more terms from R. J. Mathar, Mar 01 2010
a(11) from Donovan Johnson, Mar 14 2010
STATUS
approved
2^a(n) is the highest power of 2 dividing A000930(n).
+20
2
0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 3, 0, 3, 7, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 1, 0, 4, 1, 0, 0, 0, 4, 0, 4, 6, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 3, 0, 3, 6, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 1, 0, 5, 1, 0, 0, 0, 5, 0, 5, 7, 0
OFFSET
0,6
COMMENTS
This is the 2-adic valuation of A000930.
LINKS
MATHEMATICA
A000930[n_] := Sum[Binomial[n - 2*i, i], {i, 0, Floor[n/3]}];
Table[IntegerExponent[A000930[n], 2], {n, 0, 100}] (* G. C. Greubel, Apr 26 2017 *)
PROG
(Magma) A000930:=func<i | &+[Binomial(i-2*k, k): k in [0..i div 3]]>; [Valuation(A000930(n), 2): n in [0..120]]; // Bruno Berselli, Aug 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 04 2013
STATUS
approved

Search completed in 0.216 seconds