Amiram Eldar, <a href="/A369567/b369567_1.txt">Table of n, a(n) for n = 1..10000</a>
Amiram Eldar, <a href="/A369567/b369567_1.txt">Table of n, a(n) for n = 1..10000</a>
reviewed
approved
proposed
reviewed
editing
proposed
<a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
<a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
Amiram Eldar, <a href="/A369567/b369567_1.txt">Table of n, a(n) for n = 1..10000</a>
allocated for Amiram EldarPowerful exponentially 2^n-numbers: numbers whose prime factorization contains only exponents that are powers of 2 that are larger than 1.
1, 4, 9, 16, 25, 36, 49, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 625, 676, 784, 841, 900, 961, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 3025, 3249
1,2
a(n) = A138302(n)^2.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^(2^k)) = 1.62194750148969761827... .
q[n_] := AllTrue[FactorInteger[n][[;; , 2]], # > 1 && # == 2^IntegerExponent[#, 2] &]; Select[Range[3300], # == 1 || q[#] &]
(PARI) is(n) = {my(e = factor(n)[, 2]); if(n == 1, 1, for(i = 1, #e, if(e[i] == 1 || e[i] >> valuation(e[i], 2) > 1, return(0))); 1); }
allocated
nonn
Amiram Eldar, Jan 26 2024
approved
editing
allocated for Amiram Eldar
allocated
approved