proposed
approved
proposed
approved
editing
proposed
Growth of happy bug population in GCSE maths math course work assignment.
approved
editing
editing
approved
From Paul Curtz, Nov 02 2021 (Start)
a(n-2) difference table (from 0, 0, a(n)):
0 0 1 0 3 2 9 12 31 54 ...
0 1 -1 3 -1 7 3 19 23 63 ...
1 -2 4 -4 8 -4 16 4 40 44 ...
-3 6 -8 12 -12 20 -12 36 4 84 ...
9 -14 20 -24 32 -32 48 -32 80 0 ...
-23 34 -44 56 -64 80 -80 112 -80 176 ...
57 -78 100 -120 144 -160 192 -192 256 -192 ...
... .
The signature is valid for every row.
a(n-2) + a(n-1) = A001045(n).
a(n-2) + a(n+1) = A062510(n) = 3*A001045(n).
a(n-2) + a(n+3) = see A144472(n+1).
Second subdiagonal: 1, 6, 20, 56, 144, 352, ... = A014480(n).
First subdiagonal: -A036895(n) = -2*A001787(n).
Main diagonal: A001787(n) = -first and -third upper diagonals.
Second, fourth and fifth upper diagonals: A001792(n), A045891(n+2) and A172160(n+1). (End)
From Paul Curtz, Nov 02 2021 (Start)
a(n-2) + a(n-1) = A001045(n), for a(-1) = a(-2) = 0 here and below too.
a(n-2) + a(n+1) = A062510(n) = 3*A001045(n).
a(n-2) + a(n+3) = A144472(n+1).
b(n) = A091919(n-4), if b >= 4 else b(n) = 0.
a(n-2) = b(n+2) - 2*b(n+1) + b(n).
a(n) - a(n-2) = A078008(n) (End).
From Paul Curtz and Thomas Scheuerle, Nov 02 2021 (Start)
A014480(n) = Sum_{k=0..n}(-1)^(n-k)*binomial(n, k)*(a(2*n-k) - 2*a(2*n-k-1) - a(2*n-k-2)), if a(-1) = a(-2) = 0.
a(n) = Sum_{k=0..floor((n+2)/2)}*binomial(n-k+2, k)*A001787(k)
- Sum_{k=0..floor((n+1)/2)}*binomial(n-k+1, k)*A036289(k).
a(n+1) = Sum_{k=0..floor((n+1)/2)}*binomial(n-k+1, k)*A001792(k)
- Sum_{k=0..floor(n/2)}*binomial(n-k, k)*A001787(k+1).
a(n+3) = Sum_{k=0..floor((n+1)/2)}*binomial(n-k+1, k)*A045891(k)
+ Sum_{k=0..floor(n/2)}*binomial(n-k, k)*A001787(k+1).
a(n+4) = Sum_{k=0..floor((n+1)/2)}*binomial(n-k+1, k)*A172160(k+1)
+ Sum_{k=0..floor(n/2)}*binomial(n-k, k)*A045891(k+3).
(End)
approved
editing
proposed
approved
editing
proposed
a(n-2) = b(n+2) - 2*b(n+1) + b(n)0.
proposed
editing
editing
proposed