reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = (1/2)*(200*n^4 - 120*n^3 + 18*n^2) for n even.
a(n) = (1/2)*(200*n^4 + 280*n^3 + 138*n^2 + 28*n + 2) for n odd.
G.f.: 4*x*(81 + 208*x + 2523*x^2 + 1508*x^3 + 4071*x^4 + 680*x^5 + 525*x^6 + 4*x^7) / ((1-x)^5*(1+x)^4).
More terms from Patrick De Geest, Aug 17 2000.
approved
editing
proposed
approved
editing
proposed
(PARI) concat(0, Vec(4*x*(81+208*x+2523*x^2+1508*x^3+4071*x^4+680*x^5+525*x^6+4*x^7) / ((1-x)^5*(1+x)^4) + O(x^40))) \\ Colin Barker, Dec 17 2015
proposed
editing
editing
proposed
More terms from Patrick De Geest, 08/Aug 17 2000.
0, 324, 1156, 12544, 21904, 81796, 116964, 291600, 379456, 763876, 940900, 1658944, 1971216, 3175524, 3678724, 5550736, 6310144, 9060100, 10150596, 14017536, 15523600, 20775364, 22791076, 29724304, 32353344, 41293476, 44649124, 55950400, 60155536, 74200996
Colin Barker, <a href="/A014792/b014792.txt">Table of n, a(n) for n = 0..1000</a>
<a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-4,-6,6,4,-4,-1,1).
From Colin Barker, Dec 17 2015: (Start)
a(n) = 1/2*(200*n^4-120*n^3+18*n^2) for n even.
a(n) = 1/2*(200*n^4+280*n^3+138*n^2+28*n+2) for n odd.
G.f.: 4*x*(81+208*x+2523*x^2+1508*x^3+4071*x^4+680*x^5+525*x^6+4*x^7) / ((1-x)^5*(1+x)^4).
(End)
(PARI) concat(0, Vec(4*x*(81+208*x+2523*x^2+1508*x^3+4071*x^4+680*x^5+525*x^6+4*x^7)/((1-x)^5*(1+x)^4) + O(x^40))) \\ Colin Barker, Dec 17 2015
nonn,easy
approved
editing