login

Revision History for A014792

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Squares of even heptagonal numbers.
(history; published version)
#19 by Andrew Howroyd at Sun Oct 06 17:27:35 EDT 2019
STATUS

reviewed

approved

#18 by Michel Marcus at Sun Oct 06 17:15:45 EDT 2019
STATUS

proposed

reviewed

#17 by Jon E. Schoenfield at Sun Oct 06 16:46:24 EDT 2019
STATUS

editing

proposed

#16 by Jon E. Schoenfield at Sun Oct 06 16:46:21 EDT 2019
FORMULA

a(n) = (1/2)*(200*n^4 - 120*n^3 + 18*n^2) for n even.

a(n) = (1/2)*(200*n^4 + 280*n^3 + 138*n^2 + 28*n + 2) for n odd.

G.f.: 4*x*(81 + 208*x + 2523*x^2 + 1508*x^3 + 4071*x^4 + 680*x^5 + 525*x^6 + 4*x^7) / ((1-x)^5*(1+x)^4).

EXTENSIONS

More terms from Patrick De Geest, Aug 17 2000.

STATUS

approved

editing

#15 by Alois P. Heinz at Thu Dec 17 06:58:39 EST 2015
STATUS

proposed

approved

#14 by Colin Barker at Thu Dec 17 06:24:11 EST 2015
STATUS

editing

proposed

Discussion
Thu Dec 17
06:58
Alois P. Heinz: ok.
#13 by Colin Barker at Thu Dec 17 06:23:55 EST 2015
PROG

(PARI) concat(0, Vec(4*x*(81+208*x+2523*x^2+1508*x^3+4071*x^4+680*x^5+525*x^6+4*x^7) / ((1-x)^5*(1+x)^4) + O(x^40))) \\ Colin Barker, Dec 17 2015

STATUS

proposed

editing

#12 by Colin Barker at Thu Dec 17 06:23:22 EST 2015
STATUS

editing

proposed

#11 by Colin Barker at Thu Dec 17 06:20:42 EST 2015
EXTENSIONS

More terms from Patrick De Geest, 08/Aug 17 2000.

Discussion
Thu Dec 17
06:23
Colin Barker: I invented a valid date for the extension.
#10 by Colin Barker at Thu Dec 17 06:18:37 EST 2015
DATA

0, 324, 1156, 12544, 21904, 81796, 116964, 291600, 379456, 763876, 940900, 1658944, 1971216, 3175524, 3678724, 5550736, 6310144, 9060100, 10150596, 14017536, 15523600, 20775364, 22791076, 29724304, 32353344, 41293476, 44649124, 55950400, 60155536, 74200996

LINKS

Colin Barker, <a href="/A014792/b014792.txt">Table of n, a(n) for n = 0..1000</a>

<a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-4,-6,6,4,-4,-1,1).

FORMULA

From Colin Barker, Dec 17 2015: (Start)

a(n) = 1/2*(200*n^4-120*n^3+18*n^2) for n even.

a(n) = 1/2*(200*n^4+280*n^3+138*n^2+28*n+2) for n odd.

G.f.: 4*x*(81+208*x+2523*x^2+1508*x^3+4071*x^4+680*x^5+525*x^6+4*x^7) / ((1-x)^5*(1+x)^4).

(End)

PROG

(PARI) concat(0, Vec(4*x*(81+208*x+2523*x^2+1508*x^3+4071*x^4+680*x^5+525*x^6+4*x^7)/((1-x)^5*(1+x)^4) + O(x^40))) \\ Colin Barker, Dec 17 2015

KEYWORD

nonn,easy

STATUS

approved

editing