login
A346656
Primes p for which the elliptic curve y^2 = x^3 + 2*p*x has positive rank.
0
7, 17, 23, 47, 79, 89, 103, 113, 127, 137, 167, 193, 199, 223, 233, 239, 257, 271, 353, 359, 367, 409, 431, 433, 439, 449, 457, 463, 479, 569, 577, 593, 599, 601, 647, 673, 727, 769, 809, 823, 839, 857, 929, 937, 983, 1009, 1031, 1039, 1063, 1087, 1097, 1129, 1151, 1193, 1201, 1217, 1223
OFFSET
1,1
LINKS
P. G. Walsh, Maximal ranks and integer points on a family of elliptic curves II, Rocky Mountain J. Math. 41 (2011), no. 1, 311-317.
PROG
(Magma)
for i in [2..200] do
p:=NthPrime(i);
E:=EllipticCurve([2*p, 0]);
if Rank(E) gt 0 then print(p);
end if;
end for;
(PARI) forprime(p=2, 1250, my(E=ellinit([2*p, 0])); if(ellanalyticrank(E)[1]>0, print1(p, ", "))) \\ Hugo Pfoertner, Aug 06 2021
CROSSREFS
Sequence in context: A115591 A265810 A026349 * A057183 A076293 A227276
KEYWORD
nonn
AUTHOR
Gary Walsh, Aug 06 2021
STATUS
approved