login
A171857
Number of n-step up-side self-avoiding walks on the lattice strip {0,1,2} x Z (up-side means that the walks move up and sideways but not down).
1
1, 2, 4, 8, 15, 28, 53, 101, 192, 364, 690, 1309, 2484, 4713, 8941, 16962, 32180, 61052, 115827, 219744, 416893, 790921, 1500520, 2846756, 5400806, 10246297, 19439064, 36879393, 69966825, 132739618, 251830868, 477768336, 906412247, 1719626644
OFFSET
0,2
FORMULA
G.f.: (1 + z^2 + z^3)/(1 - 2z + z^2 - z^3 - z^4).
EXAMPLE
a(3)=8 because we have UUU, UUR, URU, RUU, RUL, RRU, RUR, and URR, where U, L, and R denote up, left, and right steps, respectively.
MAPLE
g := (1+z^2+z^3)/(1-2*z+z^2-z^3-z^4): gser := series(g, z = 0, 43): seq(coeff(gser, z, n), n = 0 .. 35);
MATHEMATICA
LinearRecurrence[{2, -1, 1, 1}, {1, 2, 4, 8}, 40] (* Harvey P. Dale, Jan 11 2024 *)
CROSSREFS
Cf. A171856.
Sequence in context: A239554 A268393 A118870 * A190160 A332052 A088532
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 31 2010
EXTENSIONS
Definition corrected by Emeric Deutsch, Apr 01 2010
STATUS
approved