login
A077610
Triangle in which n-th row lists unitary divisors of n.
82
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 3, 8, 24, 1, 25, 1, 2, 13, 26, 1, 27, 1, 4, 7, 28, 1, 29, 1, 2, 3, 5, 6, 10, 15, 30
OFFSET
1,3
COMMENTS
n-th row = n-th row of A165430 without repetitions. - Reinhard Zumkeller, Mar 04 2013
Denominators of sequence of all positive rational numbers ordered as follows: let m = p(i(1))^e(i(1))*...*p(i(k))^e(i(k)) be the prime factorization of m. Let S(m) be the vector of rationals p(i(k+1-j))^e(i(k+1-j))/p(i(j))^e(i(j)) for j = 1..k. The sequence (a(n)) is the concatenation of vectors S(m) for m = 1, 2, ...; for numerators see A229994. - Clark Kimberling, Oct 31 2013
The concept of unitary divisors was introduced by the Indian mathematician Ramaswamy S. Vaidyanathaswamy (1894-1960) in 1931. He called them "block factors". The term "unitary divisor" was coined by Cohen (1960). - Amiram Eldar, Mar 09 2024
LINKS
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, Vol. 74 (1960), pp. 66-80.
R. Vaidyanathaswamy, The theory of multiplicative arithmetic functions, Transactions of the American Mathematical Society, Vol. 33, No. 2 (1931), pp. 579-662.
Eric Weisstein's World of Mathematics, Unitary Divisor.
EXAMPLE
1;
1, 2;
1, 3;
1, 4;
1, 5;
1, 2, 3, 6;
1, 7;
1, 8;
1, 9;
1, 2, 5, 10;
1, 11;
MAPLE
with(numtheory);
# returns the number of unitary divisors of n and a list of them, from N. J. A. Sloane, May 01 2013
f:=proc(n)
local ct, i, t1, ans;
ct:=0; ans:=[];
t1:=divisors(n);
for i from 1 to nops(t1) do
d:=t1[i];
if igcd(d, n/d)=1 then ct:=ct+1; ans:=[op(ans), d]; fi;
od:
RETURN([ct, ans]);
end;
MATHEMATICA
row[n_] := Select[ Divisors[n], GCD[#, n/#] == 1 &]; Table[row[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Oct 22 2012 *)
PROG
(Haskell)
a077610 n k = a077610_row n !! k
a077610_row n = [d | d <- [1..n], let (n', m) = divMod n d,
m == 0, gcd d n' == 1]
a077610_tabf = map a077610_row [1..]
-- Reinhard Zumkeller, Feb 12 02
(PARI) row(n)=my(f=factor(n), k=#f~); Set(vector(2^k, i, prod(j=1, k, if(bittest(i, j-1), 1, f[j, 1]^f[j, 2]))))
v=[]; for(n=1, 20, v=concat(v, row(n))); v \\ Charles R Greathouse IV, Sep 02 2015
(PARI) row(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } \\ Michel Marcus, Oct 11 2015
CROSSREFS
Cf. A037445, A027750, A034444 (row lengths), A034448 (row sums); A206778.
Sequence in context: A330752 A222266 A077609 * A329534 A317746 A364449
KEYWORD
nonn,tabf
AUTHOR
Eric W. Weisstein, Nov 11 2002
STATUS
approved