login
A054881
Number of walks of length n along the edges of an octahedron starting and ending at a vertex and also ( with a(0)=0 ) between two opposite vertices.
11
1, 0, 4, 8, 48, 160, 704, 2688, 11008, 43520, 175104, 698368, 2797568, 11182080, 44744704, 178946048, 715849728, 2863267840, 11453333504, 45812809728, 183252287488, 733007052800, 2932032405504, 11728121233408
OFFSET
0,3
FORMULA
a(n) = 4*A003683(n-1) + 0^n/2, n >= 0.
a(n) = (4^n + (-1)^n*2^(n+1) + 3*0^n)/6.
G.f.: (1/6)*(3 + 2/(1+2*x) + 1/(1-4*x)).
From L. Edson Jeffery, Apr 22 2015: (Start)
G.f.: (1-2*x-4*x^2)/((1+2*x)*(1-4*x)).
a(n) = 8*A246036(n-3) + 0^n/2, n >= 0. (End)
a(n) = 2^n*A001045(n-1) + (1/2)*[n=0] = 2^n*(2^(n-1) + (-1)^n)/3 + (1/2)*[n=0], n >= 0. - Ralf Steiner, Aug 27 2020, edited by M. F. Hasler, Sep 11 2020
E.g.f.: (1/6)*(exp(4*x) + 2*exp(-2*x) + 3). - G. C. Greubel, Feb 06 2023
MATHEMATICA
CoefficientList[Series[(1-2*x-4*x^2)/((1+2x)*(1-4x)), {x, 0, 40}], x] (* L. Edson Jeffery, Apr 22 2015 *)
LinearRecurrence[{2, 8}, {1, 0, 4}, 41] (* G. C. Greubel, Feb 06 2023 *)
PROG
(Magma) [(4^n+(-1)^n*2^(n+1)+3*0^n)/6: n in [0..30]]; // Vincenzo Librandi, Apr 23 2015
(SageMath) [(4^n + (-1)^n*2^(n+1) + 3*0^n)/6 for n in range(31)] # G. C. Greubel, Feb 06 2023
KEYWORD
nonn,walk,easy
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
STATUS
approved