OFFSET
0,21
COMMENTS
A Lamé sequence of higher order.
a(n) = number of compositions of n in which each part is >=10. - Milan Janjic, Jun 28 2010
a(n+19) equals the number of binary words of length n having at least 9 zeros between every two successive ones. - Milan Janjic, Feb 09 2015
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
J. Hermes, Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden, Math. Ann., 45 (1894), 371-380.
Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
G.f.: (x-1)/(x-1+x^10). - Alois P. Heinz, Aug 04 2008
For positive integers n and k such that k <= n <= 10*k, and 9 divides n-k, define c(n,k) = binomial(k,(n-k)/9), and c(n,k) = 0, otherwise. Then, for n>= 1, a(n+10) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011
MAPLE
f := proc(r) local t1, i; t1 := []; for i from 1 to r do t1 := [op(t1), 0]; od: for i from 1 to r+1 do t1 := [op(t1), 1]; od: for i from 2*r+2 to 50 do t1 := [op(t1), t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
a:= n-> (Matrix(10, (i, j)-> if (i=j-1) then 1 elif j=1 then [1, 0$8, 1][i] else 0 fi)^n)[10, 10]: seq(a(n), n=0..80); # Alois P. Heinz, Aug 04 2008
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 1, 0, 0, 0, 0, 0, 0, 0, 0, 1]^n)[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved