Skip to main content
Log in

Intervertebral and Epiphyseal Fusion in the Postnatal Ontogeny of Cetaceans and Terrestrial Mammals

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

In this paper we studied three related aspects of the ontogeny of the vertebral centrum of cetaceans and terrestrial mammals in an evolutionary context. We determined patterns of ontogenetic fusion of the vertebral epiphyses in bowhead whale (Balaena mysticetus) and beluga whale (Delphinapterus leucas), comparing those to terrestrial mammals and Eocene cetaceans. We found that epiphyseal fusion is initiated in the neck and the sacral region of terrestrial mammals, while in recent aquatic mammals epiphyseal fusion is initiated in the neck and caudal regions, suggesting locomotor pattern and environment affect fusion pattern. We also studied bony fusion of the sacrum and evaluated criteria used to homologize cetacean vertebrae with the fused sacrum of terrestrial mammals. We found that the initial ossification of the vertebral pedicles in the fetus may be a reliable indicator of sacral homology in modern cetaceans. Finally, we also studied fusion of the centra of cervical vertebrae in B. mysticetus and found that it is not completed until after sexual maturity, and after 20 years of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Vietnam)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bajpai S, Thewissen JGM (2000) A new, diminutive Eocene whale from Kachchh (Gujarat, India) and its implications for locomotor evolution of cetaceans. Curr Sci India 79:1478–1482

    Google Scholar 

  • Bebej RM (2011) Functional morphology of the vertebral column in Remingtonocetus (Mammalia, Cetacea) and the evolution of aquatic locomotion in early archaeocetes. PhD Dissertation, University of Michigan

  • Bebej RM, ul-Haq M, Zalmout IS, Gingerich PD (2012) Morphology and function of the vertebral column in Remingtonocetus domandaensis (Mammalia, Cetacea) from the middle Eocene Domanda Formation of Pakistan. J Mammal Evol 19:77–104

    Article  Google Scholar 

  • Best PB, Lockyer CH (2002) Reproduction, growth, and migrations of sei whales Balaenoptera borealis off the west coast of South Africa. S Afr J Marine Sci 24:111–133

    Article  Google Scholar 

  • Bruggeman BJ, Maier JA, Mohiuddin YS, Powers R, Lo Y, Guimarães-Camboa N, Evans SM, Arfe BD (2012) Avian intervertebral disc arises from rostral sclerotome and lacks a nucleus pulposus: implications for evolution of the vertebrate disc. Dev Dynam 241:567–683

    Article  Google Scholar 

  • Buchholtz EA (1998) Implications of vertebral morphology for locomotor evolution in early Cetacea. In: Thewissen JGM (ed) The Emergence of Whales, Evolutionary Patterns in the Origin of Cetacea. Plenum Press, New York, pp 325–351

    Chapter  Google Scholar 

  • Buchholtz EA (2001) Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). J Zool 253:175–190

    Article  Google Scholar 

  • Buchholtz EA (2007) Modular evolution of the cetacean vertebral column. Evol Dev 9:278–289

    Article  CAS  PubMed  Google Scholar 

  • Buchholtz EA (2010) Vertebral and rib anatomy in Caperea marginata: implications for evolutionary patterning of the mammalian vertebral column. Mar Mammal Sci 27:382–397

    Article  Google Scholar 

  • Buchholtz EA, Booth AC, Webbnik KE (2007) Vertebral anatomy in the Florida manatee, Trichechus manatus latirostris: a developmental and evolutionary analysis. Anat Rec 290:624–637

    Google Scholar 

  • Buchholtz EA, Wolkovich EM, Cleary RJ (2005) Vertebral osteology and complexity in Lagenorhynchus acutus (Delphinidae) with comparison to other delphinoid genera. Mar Mammal Sci 21:411–428

    Article  Google Scholar 

  • Chittleborough RG (1955) Puberty, physical maturity, and relative growth of the female humpback whale, Megaptera nodosa (Bonnaterre) on the Western Australian coast. Aust J Mar Fresh Res 6:315–327

    Article  Google Scholar 

  • Cooper LN, Thewissen JGM, Bajpai S, Tiwari BN (2012) Postcranial morphology and locomotion of the Eocene raoellid Indohyus (Artiodactyla: Mammalia). Historical Biol 24:279–310

    Google Scholar 

  • Dawson AB (1925) The age order of epiphyseal union in the long bones of the albino rat. Anat Rec 31:1–18

    Article  Google Scholar 

  • Eschricht DF, Reinhardt J, Lilljeborg W (1866) Recent Memoirs on the Cetacea. Flower WH (ed), Published for the Ray Society by Robert Hardwicke, London

    Google Scholar 

  • Evans HE (1993) Miller’s Anatomy of the Dog. Third Ed. WB Saunders Company, Philadelphia

  • Fish FE (1996) Transitions from drag-based to lift-based propulsion in mammalian aquatic swimming. Am Zool 36:628–641

    Google Scholar 

  • Fish FE, Peacock JE, Rohr JJ (2000) Stabilization mechanism in swimming odontocetes cetaceans by phased movements. Mar Mammal Sci 19:515–528

    Article  Google Scholar 

  • Fraas E (1904) Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geol Palaeontol Abh 6:199–220

    Google Scholar 

  • Galatius A (2010) Paedomorphosis in two small species of toothed whales (Odontoceti): how and why? Zool J Linn Soc 99:278–295

    Article  Google Scholar 

  • Galatius A, Kinze CC (2003) Ankylosis patterns in the postcranial skeleton and hyoid bones of the harbour porpoise (Phocoena phocoena) in the Baltic and North Sea. Can J Zool 81:1851–1861

    Article  Google Scholar 

  • Gegenbaur C, Bell FJ (1878) Elements of Comparative Anatomy. Macmillan and Co, London

    Google Scholar 

  • Geisler JH, Theodor JM (2009) Hippopotamus and whale phylogeny. Nature 458:E1–E4

    Article  CAS  PubMed  Google Scholar 

  • Geisler JH, Theodor JM, Uhen MD, Foss SE (2007). Phylogenetic relationships of cetaceans to terrestrial artiodactyls. In: Prothero DR, Foss SE (eds) The Evolution of Artiodactyls. The Johns Hopkins University Press, Baltimore, pp 19–31

  • Geisler JH, Uhen MD (2005) Phylogenetic relationships of extinct cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data. J Mammal Evol 12:145–160

    Article  Google Scholar 

  • Gérard M, Zákány J, Duboule D (1997) Interspecies exchange of a Hoxd enhancer in vivo induces premature transcription and anterior shift of the sacrum. Dev Biol 190:32–40

    Article  PubMed  Google Scholar 

  • Getty R (1975) Sisson and Grossman’s The Anatomy of the Domestic Animals. Fifth Ed. WB Saunders Company, Philadelphia

  • Gingerich PD, Raza SM, Arif M, Anwar M, Zhou X (1994) New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847

    Article  Google Scholar 

  • Gingerich PD, Ul-Haq, Khan I, Zalmount IS (2001) Eocene stratigraphy and archaeocete whales (Mammalia, Cetacea) of Drug Lahar in the Eastern Sulaiman Range, Balochistan (Pakistan). Contrib Mus Paleolotol Univ Mich 30:269–319

    Google Scholar 

  • Graf W, de Waele C, Vidal PP (1995) Functional anatomy of the head-neck movement system of quadrupedal and bipedal mammals. J Anat 186:55–74

    PubMed Central  PubMed  Google Scholar 

  • Haldiman JT, Tarpley RJ (1993) Anatomy and physiology. In: Burns JJ, Montague JJ, Cowles CJ (eds) The Bowhead Whale. The Society of Marine Mammology Press, Lawrence, Kansas, pp 71–156

    Google Scholar 

  • Hillson S (1986) Cambridge Manuals in Archaeology- Teeth. Cambridge University Press, London

    Google Scholar 

  • Hristova GI, Jarzem P, Ouellet JA, Roughley PJ, Epure LM, Antoniou J, Mwale F (2011) Calcification in human intervertebral disc degeneration and scoliosis. J Orthop Res 29:1888–1895

    Article  PubMed  Google Scholar 

  • Ito H, Miyazaki N (1990) Skeletal development of the striped dolphin (Stenella coeruleoalba) in Japanese waters. Mammal Study 14:79–96

    Google Scholar 

  • Kandel BM, Hullar TE (2010) The relationship of head movements to semicircular canal size in cetaceans. J Exp Biol 213:1175–1181

    Article  PubMed Central  PubMed  Google Scholar 

  • Kato H (1988) Ossification pattern of the vertebral epiphyses in the southern minke whale. Sci Rep Whales Res Inst 39:11–19

    Google Scholar 

  • Kellogg R (1936) A Review of the Archaeoceti. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Kemper CM, Leppard P (1999) Estimating body length of pygmy right whales (Caperea marginata) from measurements of the skeleton and baleen. Mar Mammal Sci 15:683–700

    Article  Google Scholar 

  • Lessertisseur J, Saban R (1967) Squelette axial. In: Grassé P-P (ed) Traité de Zoologie, Anatomie, Systematique, Biologie, Vol. 16.1 Mammifères, Téguments, Squelette. Masson et Cie, Paris, pp 584–708

    Google Scholar 

  • Lubetkin SC, Zeh JE, George JC (2012) Statistical modeling of baleen and body length at age in bowhead whales (Balaena mysticetus). Can J Zool 90:915–931

    Google Scholar 

  • Madar SI, Thewissen JGM, Hussain ST (2002) Additional holotype remains of Ambulocetus natans (Cetacea, Ambulocetidae) and their implications for locomotion in early whales. J Vertebr Paleontol 22:405–422

    Article  Google Scholar 

  • McIntyre DC, Rakshit S, Yallowitz AR, Loken L, Jeannotte L, Capecchi MR, Wellik DM (2007) Hox patterning of the vertebrate rib cage. Development 134:2981–2989

    Article  CAS  PubMed  Google Scholar 

  • Mead JG, Potter CW (1990) Natural history of the bottlenose dolphins along the Central Atlantic Coast of the United States. In: Leatherwood S, Reeves RR (eds) The Bottlenose Dolphin. Academic Press, San Diego, pp 31–43

    Google Scholar 

  • Messenger SL, McGuire JA (1998) Morphology, molecules, and the phylogenetics of cetaceans. Syst Biol 47:90–124

    Article  CAS  PubMed  Google Scholar 

  • Moore JC (1968) Relationships among the living genera of beaked whales with classifications, diagnoses, and keys. Fieldiana: Zool 53:209–298

    Google Scholar 

  • Munro ND, Bar-Oz G, Stutz AJ (2009) Aging mountain gazelle (Gazella gazelle): refining method of tooth eruption and wear and bone fusion. J Archaeol Sci 36:752–763

    Article  Google Scholar 

  • Narita Y, Kuratani S (2005) Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J Exp Zool Part A 304B:91–106.

    Article  Google Scholar 

  • Nickel R, Schummer A, Seiferle E (1954) Lehrbuch der Anatomie der Haustiere, Vol. I. Bewegungsapparat. Parey P, Berlin, Hamburg, 503 pp

  • Ohsumi SK, Nishiwaki M, Hibiya T (1958) Growth of fin whale in the Northern Pacific. The Whales Research Institute, No. 13, Japan

  • Pourquié O (2007) Building the spine: the vertebrate segmentation clock. Cold Sh Q B 72:445–449

    Google Scholar 

  • Purdue JR (1983) Epiphyseal closure in white-tailed deer. J Wildlife Manage 47:1207–1213

    Article  Google Scholar 

  • Rasband WS (2011) Image J. U. S. National Institutes of Health, Bethesda, Maryland, http://imagej.nih.gov/ij/

  • Roach HI, Mehta G, Oreffo ROC, Clarke NMP, Cooper C (2003) Temporal analysis of rat growth plate: cessation of growth with age despite presence of a physis. J Histochem Cytochem 51:373–383

    Article  CAS  PubMed  Google Scholar 

  • Rose KD (1985) Comparative osteology of North American dichobunid artiodactyls. J Paleontol 59:1203–1226

    Google Scholar 

  • Shashikant CS, Kim CB, Borbély MA, Wang WCH (1998) Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis acting element. Proc Natl Acad Sci USA 95:15446–15451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sipla J, Spoor F (2008) The physics and physiology of balance. In: Thewissen JGM, Nummela S (eds) Sensory Evolution on the Threshold, Adaptations in Secondarily Aquatic Vertebrates. University of California Press, Berkeley, pp 227–232

  • Slijper EJ (1936) Die Cetaceen. A. Asher & Co, Amsterdam

    Google Scholar 

  • Spaulding M, O’Leary MA, Gatesy J (2009) Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS ONE 4:1–14

    Google Scholar 

  • Spoor F, Bajpai S, Hussain ST, Kumar K, Thewissen JGM (2002). Vestibular evidence for the evolution of aquatic behavior in early cetaceans. Nature 417:163–166

    Google Scholar 

  • Spoor F, Thewissen JGM (2008) Balance: comparative and functional anatomy in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory Evolution on the Threshold, Adaptations in Secondarily Aquatic Vertebrates. University of California Press, Berkeley, pp 257–284

    Google Scholar 

  • Thewissen JGM, Bajpai S (2009) New skeletal material of Andrewsiphius and Kutchicetus, two Eocene cetaceans from India. J Paleontol 83:635–663

    Article  Google Scholar 

  • Thewissen JGM, Cooper LN, Behringer RR (2012) Developmental biology enriches paleontology. J Vertebr Paleontol 32:1223–1234

    Google Scholar 

  • Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194

    Google Scholar 

  • Thewissen JGM, Cooper LN, George JC, Bajpai S (2009) From land to water: the origin of whales, dolphins and porpoises. Evolution: Education and Outreach 2 272–288

  • Thewissen JGM, Heyning J (2007) Embryogenesis and development in Stenella attenuata and other cetaceans. In: Jamieson BGM (ed) Reproductive Biology and Phylogeny of Cetacea: Whales, Dolphins, and Porpoises. Science Publishers, New Hampshire, pp 307–329

    Chapter  Google Scholar 

  • Thewissen JGM, Hussain ST (1990) Postcranial osteology of the most primitive artiodactyls Diacodexis pakistanensis (Dichobunidae). Anat Histol Embryol19:37–48

    Article  CAS  PubMed  Google Scholar 

  • Thewissen JGM, Madar SI (1999) Ankle morphology of the earliest cetaceans and its implications for the phylogenetic relations among ungulates. Syst Biol 48:21–30

    Article  CAS  PubMed  Google Scholar 

  • Thewissen JGM, Madar SI, Hussain ST (1996) Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Vol. 191 Courier Forschungsinstitut Senckenberg

  • Thewissen JGM, Williams EM, Roe LJ, Hussain ST (2001) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413:277–281

    Article  CAS  PubMed  Google Scholar 

  • Uhen MD (1999) New protocetid (Mammalia, Cetacea) from the late middle Eocene Cook Mountain Formation of Louisiana. J Vertebr Paleontol 18:664–668

    Article  Google Scholar 

  • Uhen MD (2004) Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the middle to late Eocene of Egypt. Univ Michigan Pap Paleontol 34

  • Uhen MD, Pyenson ND, Devris TJ, Urbina M, Renne PR (2011) New middle Eocene whales from the Pisco Basin of Peru. J Vertebr Paleontol 85:955–969.

    Article  Google Scholar 

  • Wassersug RA (1976) A procedure for differential staining of cartilage and bone in whole formalin fixed vertebrates. Stain Technol 51:131–134

    CAS  PubMed  Google Scholar 

  • Wheeler JFG (1930) The Age of Fin Whales at Physical Maturity with a Note on Multiple Ovulatons. Cambridge University Press, Cambridge

    Google Scholar 

  • Yoshida H, Shirakihara M, Takemura A, Shirokihara K (1994) Development, sexual dimorphism, and individual variation in the skeleton of the finless porpoise, Neophocaena phocaenoides, in the coastal waters of western Kyushu, Japan. Mar Mammal Sci 10:266–282

    Article  Google Scholar 

  • Zákány J, Gérard M, Favier B, Duboule D (1997) Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO J 16: 4393–4402

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Sanders WJ, Gingerich PD (1992) Functional and behavorial implications of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contrib Mus Paleolotol Univ Mich 28: 289–319

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Department of Wildlife Management, North Slope Borough; the Alaska Eskimo Whaling Commission, local subsistence hunters; Dr. Terrence Demos, Department of Radiology, LUMC, for his generosity with scanning fossil cetaceans; Dr. Sirpa Nummela, University of Helsinki; Dr. Lisa Noelle Cooper, NEOMED; Dr. John F. Moran, LUMC; Dr. Larry Heaney and John Mead, FMNH and Sue McLaren, CM for their help and access to museum collections; and Dr. Emily Buchholtz for her correspondence during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghan M. Moran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, M.M., Bajpai, S., George, J.C. et al. Intervertebral and Epiphyseal Fusion in the Postnatal Ontogeny of Cetaceans and Terrestrial Mammals. J Mammal Evol 22, 93–109 (2015). https://doi.org/10.1007/s10914-014-9256-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-014-9256-7

Keywords