This is a list of commercially-available battery types summarizing some of their characteristics for ready comparison.
Common characteristics
editCell chemistry | Also known as | Electrode | Rechargeable | Commercialized | Voltage | Energy density | Specific power | Cost† | Discharge efficiency | Self-discharge rate | Shelf life | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anode | Electrolyte | Cathode | Cutoff | Nominal | 100% SOC | by mass | by volume | |||||||||
year | V | V | V | MJ/kg (Wh/kg) |
MJ/L (Wh/L) |
W/kg | Wh/$ ($/kWh) |
% | %/month | years | ||||||
Lead–acid | SLA VRLA PbAc |
Lead | H2SO4 | Lead dioxide | Yes | 1881[1] | 1.75[2] | 2.1[2] | 2.23–2.32[2] | 0.11–0.14 (30–40)[2] |
0.22–0.27 (60–75)[2] |
180[2] | 5.44–13.99 (72–184)[2] |
50–92[2] | 3–20[2] | |
Zinc–carbon | Carbon–zinc | Zinc | NH4Cl | Manganese (IV) oxide | No | 1898[3] | 0.75–0.9[3] | 1.5[3] | 0.13 (36)[3] |
0.33 (92)[3] |
10–27[3] | 2.49 (402)[3] |
50–60[3] | 0.32[3] | 3–5[4] | |
Zinc–air | PR | KOH | Oxygen | No | 1932[5] | 0.9[5] | 1.45–1.65[5] | 1.59 (442)[5] |
6.02 (1,673)[5] |
100[5] | 2.18 (460)[5] |
60–70[5] | 0.17[5] | 3[5] | ||
Mercury oxide–zinc | Mercuric oxide Mercury cell |
NaOH/ KOH | Mercuric oxide | No | 1942–[6] 1996[7] | 0.9[8] | 1.35[8] | 0.36–0.44 (99–123)[8] |
1.1–1.8 (300–500)[8] |
2[6] | ||||||
Alkaline | Zn/MnO 2 LR |
KOH | Manganese (IV) oxide | No | 1949[9] | 0.9[10] | 1.5[11] | 1.6[10] | 0.31–0.68 (85–190)[12] |
0.90–1.56 (250–434)[12] |
50[12] | 0.39 (2574)[12] |
45–85[12] | 0.17[12] | 5–10[4] | |
Rechargeable alkaline | RAM | KOH | Yes | 1992[13] | 0.9[14] | 1.57[14] | 1.6[14] | <1[13] | ||||||||
Silver-oxide | SR | NaOH/ KOH | Silver oxide | No | 1960[15] | 1.2[16] | 1.55[16] | 1.6[17] | 0.47 (130)[17] |
1.8 (500)[17] |
||||||
Nickel–zinc | NiZn | KOH | Nickel oxide hydroxide | Yes | 2009[13] | 0.9[13] | 1.65[13] | 1.85[13] | 13[13] | |||||||
Nickel–iron | NiFe | Iron | KOH | Yes | 1901[18] | 0.75[19] | 1.2[19] | 1.65[19] | 0.07–0.09 (19–25)[20] |
0.45 (125)[21] |
100 | 3.31–4.41 (227–302)[1] |
20–30 | 30–[22] 50[23][24] | ||
Nickel–cadmium | NiCd NiCad |
Cadmium | KOH | Yes | c. 1960[25] | 0.9–1.05[26] | 1.2[27] | 1.3[26] | 0.11 (30)[27] |
0.36 (100)[27] |
150–200[28] | 10[13] | ||||
Nickel–hydrogen | NiH 2 Ni-H 2 |
Hydrogen | KOH | Yes | 1975[29] | 1.0[30] | 1.55[28] | 0.16–0.23 (45–65)[28] |
0.22 (60)[31] |
150–200[28] | 5[31] | |||||
Nickel–metal hydride | NiMH Ni-MH |
Metal hydride | KOH | Yes | 1990[1] | 0.9–1.05[26] | 1.2[11] | 1.3[26] | 0.36 (100)[11] |
1.44 (401)[32] |
250–1,000 | 2.65 (378)[1] |
30[33] | |||
Low self-discharge nickel–metal hydride | LSD NiMH | Yes | 2005[34] | 0.9–1.05[26] | 1.2 | 1.3[26] | 0.34 (95)[35] |
1.27 (353)[36] |
250–1,000 | 0.42[33] | ||||||
Lithium–manganese dioxide | Lithium Li-MnO 2 CR Li-Mn |
Lithium | Manganese dioxide | No | 1976[37] | 2[38] | 3[11] | 0.54–1.19 (150–330)[39] |
1.1–2.6 (300–710) [39] |
250–400[39] | 1 | 5–10[39] | ||||
Lithium–carbon monofluoride | Li-(CF) x BR |
Carbon monofluoride | No | 1976[37] | 2[40] | 3[40] | 0.94–2.81 (260–780)[39] |
1.58–5.32 (440–1,478) [39] |
50–80[39] | 0.2–0.3[41] | 15[39] | |||||
Lithium–iron disulfide | Li-FeS 2 FR |
Iron disulfide | No | 1989[42] | 0.9[42] | 1.5[42] | 1.8[42] | 1.07 (297)[42] |
2.1 (580)[43] |
10-20[43] | ||||||
Lithium–titanate | Li 4Ti 5O 12 LTO |
Lithium manganese oxide or Lithium nickel manganese cobalt oxide | Yes | 2008[44] | 1.6–1.8[45] | 2.3–2.4[45] | 2.8[45] | 0.22–0.40 (60–110) |
0.64 (177) |
3,000– 5,100[46] | 0.39 (2539)[46] |
85[46] | 2–5[46] | 10–20[46] | ||
Lithium cobalt oxide | LiCoO 2 ICR LCO Li‑cobalt[47] |
Graphite‡ | LiPF6/ LiBF4/ LiClO4 | Lithium cobalt oxide | Yes | 1991[48] | 2.5[49] | 3.7[50] | 4.2[49] | 0.70 (195)[50] |
2.0 (560)[50] |
2.21 (453)[1] |
||||
Lithium iron phosphate | LiFePO 4 IFR LFP Li‑phosphate[47] |
Lithium iron phosphate | Yes | 1996[51] | 2[49] | 3.2[50] | 3.65[49] | 0.32–0.58 (90–160)[50] [52][53] |
1.20 (333)[50][52] |
200[54]–1,200[55] | 7.2 (139)[56] | 4.5 | 20 years[57] | |||
Lithium manganese oxide | LiMn 2O 4 IMR LMO Li‑manganese[47] |
Lithium manganese oxide | Yes | 1999[1] | 2.5[58] | 3.9[50] | 4.2[58] | 0.54 (150)[50] |
1.5 (420)[50] |
2.21 (453)[1] |
||||||
Lithium nickel cobalt aluminium oxides | LiNiCoAlO 2 NCA NCR Li‑aluminium[47] |
Lithium nickel cobalt aluminium oxide | Yes | 1999 | 3.0[59] | 3.6[50] | 4.3[59] | 0.79 (220)[50] |
2.2 (600)[50] |
|||||||
Lithium nickel manganese cobalt oxide | LiNi xMn yCo 1-x-yO 2 INR NMC[47] NCM[50] |
Lithium nickel manganese cobalt oxide | Yes | 2008[60] | 2.5[49] | 3.6[50] | 4.2[49] | 0.74 (205)[50] |
2.1 (580)[50] |
^† Cost in inflation-adjusted 2023 USD.
^‡ Typical. See Lithium-ion battery § Negative electrode for alternative electrode materials.
Rechargeable characteristics
editCell chemistry | Charge efficiency | Cycle durability |
---|---|---|
% | # 100% depth of discharge (DoD) cycles | |
Lead–acid | 50–92[2] | 50–100[61] (500@40%DoD[2][61]) |
Rechargeable alkaline | 5–100[13] | |
Nickel–zinc | 100 to 50% capacity[13] | |
Nickel–iron | 65–80 | 5,000 |
Nickel–cadmium | 70–90 | 500[25] |
Nickel–hydrogen | 85 | 20,000[31] |
Nickel–metal hydride | 66 | 300–800[13] |
Low self-discharge nickel–metal hydride battery | 500–1,500[13] | |
Lithium cobalt oxide | 90 | 500–1,000 |
Lithium–titanate | 85–90 | 6,000–10,000 to 90% capacity[46] |
Lithium iron phosphate | 90 | 2,500[54]–12,000 to 80% capacity[62] |
Lithium manganese oxide | 90 | 300–700 |
Thermal runaway
editUnder certain conditions, some battery chemistries are at risk of thermal runaway, leading to cell rupture or combustion. As thermal runaway is determined not only by cell chemistry but also cell size, cell design and charge, only the worst-case values are reflected here.[63]
Cell chemistry | Overcharge | Overheat | ||
---|---|---|---|---|
Onset | Onset | Runaway | Peak | |
SOC% | °C | °C | °C/min | |
Lithium cobalt oxide | 150[63] | 165[63] | 190[63] | 440[63] |
Lithium iron phosphate | 100[63] | 220[63] | 240[63] | 21[63] |
Lithium manganese oxide | 110[63] | 210[63] | 240[63] | 100+[63] |
Lithium nickel cobalt aluminium oxide | 125[63] | 140[63] | 195[63] | 260[63] |
Lithium nickel manganese cobalt oxide | 170[63] | 160[63] | 230[63] | 100+[63] |
NiCd vs. NiMH vs. Li-ion vs. Li–polymer vs. LTO
editTypes | Cell Voltage | Self-discharge | Memory | Cycles Times | Temperature | Weight |
---|---|---|---|---|---|---|
NiCd | 1.2V | 20%/month | Yes | Up to 800 | -20 °C to 60 °C | Heavy |
NiMH | 1.2V | 30%/month | Mild | Up to 500 | -20 °C to 70 °C | Middle |
Low Self Discharge NiMH | 1.2V | 3%/year–1%/month | No | 500–2,000 | -20 °C to 70 °C | Middle |
Li-ion (LCO) | 3.6V | 5–10%/month | No | 500–1,000 | -20 °C to 60 °C | Light |
LiFePO4 (LFP) | 3.2V | 2–5%/month | No | 2,500–12,000[62] | -20 °C to 60 °C | Light |
LiPo (LCO) | 3.7V | 5–10%/month | No | 500–1,000 | -20 °C to 60 °C | Lightest |
Li–Ti (LTO) | 2.4V | 2–5%/month[46] | No | 6,000–20,000 | -40 °C to 75 °C | Light |
See also
editReferences
edit- ^ a b c d e f g "mpoweruk.com: Accumulator and battery comparisons (pdf)" (PDF). Retrieved 2016-02-28.
- ^ a b c d e f g h i j k "All About Batteries, Part 3: Lead-Acid Batteries". Retrieved 2016-02-26.
- ^ a b c d e f g h i "All About Batteries, Part 5: Carbon Zinc Batteries". Retrieved 2016-02-26.
- ^ a b "Energizer Non-Rechargeable Batteries: Frequently Asked Questions" (PDF). Archived from the original (PDF) on 2016-04-04. Retrieved 2016-02-26.
- ^ a b c d e f g h i j "All About Batteries, Part 6: Zinc-Air". Retrieved 2016-03-01.
- ^ a b Narayan, R.; Viswanathan, B. (1998). Chemical And Electrochemical Energy Systems. Universities Press. p. 92. ISBN 9788173710698.
- ^ "Mercury Use in Batteries". Archived from the original on 2012-11-29. Retrieved 2016-03-01.
- ^ a b c d Crompton, Thomas Roy (2000). Batteries Reference Book. Newnes. ISBN 9780750646253. Retrieved 2016-03-01.
- ^ Herbert, W. S. (1952). "The Alkaline Manganese Dioxide Dry Cell". Journal of the Electrochemical Society. 99 (August 1952): 190C. doi:10.1149/1.2779731.
- ^ a b "Alkaline Manganese Dioxide Handbook and Application Manual" (PDF). Archived from the original (PDF) on 2010-12-16. Retrieved 2016-03-01.
- ^ a b c d "Primary and Rechargeable Battery Chemistries with Energy Density". Retrieved 2016-02-26.
- ^ a b c d e f "All About Batteries, Part 4: Alkaline Batteries". Retrieved 2016-02-26.
- ^ a b c d e f g h i j k l "Rechargeable Batteries — compared and explained in detail". Retrieved 2016-02-28.
- ^ a b c "Data Sheet of Pure Energy XL Rechargeable Alkaline Cells" (PDF). Retrieved 2016-03-01.
- ^ "The history of the battery: 2) Primary batteries". Archived from the original on 2018-05-26. Retrieved 2016-03-01.
- ^ a b "Silver Primary Cells & Batteries" (PDF). Archived from the original (PDF) on December 15, 2009. Retrieved 2016-03-01.
- ^ a b c "ProCell Silver Oxide battery chemistry". Duracell. Archived from the original on 2009-12-20. Retrieved 2009-04-21.
- ^ "Edison's non-toxic nickel-iron battery revived in ultrafast form". Wired UK. Retrieved 2016-02-28.
- ^ a b c "Nickel-Iron Power 6 cell" (PDF). Archived from the original on 2012-03-07. Retrieved 2017-03-19.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) - ^ "Energy Density from NREL Testing by Iron Edison". Archived from the original (PDF) on 2016-10-20. Retrieved 2016-02-26.
- ^ Jha, A.R. (2012-06-05). Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications. CRC Press. p. 28. ISBN 978-1439850664.
- ^ "Nickel Iron Batteries". www.mpoweruk.com.
- ^ "A description of the Chinese nickel–iron battery from BeUtilityFree" (PDF). Archived from the original (PDF) on July 25, 2021.
- ^ "NiFe FAQ's". www.beutilityfree.com. Archived from the original on 2016-02-21. Retrieved 2016-02-27.
- ^ a b "Nickel Cadmium Batteries". Electropaedia. Woodbank Communications. Retrieved 2016-02-29.
- ^ a b c d e f "Testing NiCd and NiMH Batteries". Retrieved 2016-03-01.
- ^ a b c Arther, Miller (26 February 2016). "Ons werk". Diensten (in Dutch). Retrieved 2016-02-26.
- ^ a b c d "Optimization of spacecraft electrical power subsystems" (PDF). Retrieved 2016-02-29.
- ^ "Nickel-Hydrogen Battery Technology—Development and Status" (PDF). Archived from the original (PDF) on 2009-03-18. Retrieved 2012-08-29.
- ^ Thaller, Lawrence H.; Zimmerman, Albert H. (2003). Nickel-hydrogen Life Cycle Testing. AIAA. ISBN 9781884989131.
- ^ a b c Arther, Miller (23 May 2014). "Ons werk". DoubleSmart (in Dutch). Retrieved 12 January 2019.
- ^ "Ansmann AA – NiMH 2700mAh datasheet" (PDF). Retrieved 2016-03-02.
- ^ a b "AA Battery Considerations". Retrieved 2016-03-01.
- ^ "General Description". Eneloop.info. Sanyo. Archived from the original on 2012-09-02. Retrieved 2015-08-06.
- ^ "Metero Webinar 2". Archived from the original on 2016-03-11. Retrieved 2016-03-02.
- ^ "SANYO new Eneloop Batteries Remains Energy Longer" (PDF). Archived from the original (PDF) on 2016-03-04. Retrieved 2016-03-02.
- ^ a b Dyer, Chris K; Moseley, Patrick T; Ogumi, Zempachi; Rand, David A. J.; Scrosati, Bruno (2013). Encyclopedia of Electrochemical Power Sources. Newnes. p. 561. ISBN 978-0444527455. Retrieved 2016-03-03.
- ^ "Lithium Manganese Dioxide Batteries CR2430" (PDF). Retrieved 2016-03-01.
- ^ a b c d e f g h "Li/CFx Batteries: The Renaissance" (PDF). Retrieved 2019-02-24.
- ^ a b "Chapter 1 Overview - Industrial Devices and Solutions" (PDF). Archived from the original (PDF) on 2016-03-06. Retrieved 2016-03-03.
- ^ "Lithium Carbon-monofluoride (BR) Coin Cells and FB Encapsulated Lithium Coin Cells". Archived from the original on 2015-03-30. Retrieved 2016-03-03.
- ^ a b c d e "Lithium Iron Disulfide Handbook and Application Manual" (PDF). Archived from the original (PDF) on 2006-03-17. Retrieved 2016-03-03.
- ^ a b "Energizer's Lithium Iron Disulfide – The best of all worlds for the most demanding applications" (PDF). Archived from the original (PDF) on 2016-03-06. Retrieved 2016-03-03.
- ^ "LTO Anode Material for Lithium-ion Battery Manufacturing". Retrieved 2018-12-16.
- ^ a b c Gotcher, Alan J. (29 November 2006). "Altair EDTA Presentation" (PDF). Altairnano.com. Archived from the original (PDF) on 16 June 2007.
- ^ a b c d e f g "All About Batteries, Part 12: Lithium Titanate (LTO)". Retrieved 2018-12-16.
- ^ a b c d e "Battery chemistry FINALLY explained". Archived from the original on 2016-02-12. Retrieved 2016-02-26.
- ^ "Hooked on lithium". The Economist. Retrieved 2016-02-26.
- ^ a b c d e f "Comparison Common Lithium Technologies" (PDF). Archived from the original (PDF) on 2016-12-22. Retrieved 2016-12-21.
- ^ a b c d e f g h i j k l m n o p "Lithium Battery Technologies". Retrieved 2016-02-26.
- ^ "LiFePO
4: A Novel Cathode Material for Rechargeable Batteries", A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Electrochemical Society Meeting Abstracts, 96-1, May, 1996, pp 73 - ^ a b "Great Power Group, Square lithium-ion battery". Archived from the original on 2020-08-03. Retrieved 2019-12-31.
- ^ "Lithium Battery Mystery: This 100Ah LiFePO4 Energy Density is Off the Charts". YouTube. Retrieved 2019-12-31.
- ^ a b "Archived copy" (PDF). Archived from the original (PDF) on 2016-09-21. Retrieved 2016-04-20.
{{cite web}}
: CS1 maint: archived copy as title (link) - ^ "Datasheet HeadWay LiFePO4 38120" (PDF). Retrieved 2020-04-08.
- ^ "Lithium-Ion Battery Pack Prices Hit Record Low of $139/kWh". BloombergNEF. 2023-11-26. Retrieved 2024-10-22.
- ^ "Which battery type is right for you?". Retrieved 2021-08-11.
- ^ a b "Lithium-ion Battery Overview" (PDF). Lighting Global (May 2012, Issue 10). Archived from the original (PDF) on 2014-06-17. Retrieved 2016-03-01.
- ^ a b "Lithium nickel cobalt aluminium oxide". Retrieved 2016-03-01.
- ^ "Battery Technology". Retrieved 2016-02-26.
- ^ a b electricrider.com: Lithium Batteries Citat: Citat: "...The cycle life of sealed lead-acid is directly related to the depth of discharge. The typical number of discharge/charge cycles at 25 °C (77 °F) with respect to the depth of discharge is: * 50–100 cycles with 100% depth of discharge (full discharge) * 150–250 cycles with 70% depth of discharge (deep discharge) * 300–500 cycles with 50% depth of discharge (partial discharge) * 800 and more cycles with 30% depth of discharge (shallow discharge)..."
- ^ a b "CATL wants to deliver LFP batteries for ESS at 'multi-gigawatt-hour scale' into Europe and US-CATL". catlbattery.com. Contemporary Amperex Technology Co. Limited (CATL). Archived from the original on 4 April 2023. Retrieved 3 October 2020.
- ^ a b c d e f g h i j k l m n o p q r s t u Doughty, Dan; Roth, E. Peter (2012). "A General Discussion of Li Ion Battery Safety" (PDF). The Electrochemical Society Interface. 21 (Summer 2012): 37. Bibcode:2012ECSIn..21b..37D. doi:10.1149/2.F03122if. Retrieved 2016-02-27.
- ^ Resende, Caio (3 November 2017). "Best Power Tool Battery Types: NiCd VS NiMH VS li-ion VS li-polymer".