Perylenetetracarboxylic dianhydride
Appearance
(Redirected from PTCDA)
Names | |
---|---|
Preferred IUPAC name
Peryleno[3,4-cd:9,11-c′d′]dipyran-3,5,10,12-tetrone | |
Other names
Perylene-3,4,9,10-tetracarboxylic dianhydride, Pigment Red 224
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.004.461 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C24H8O6 | |
Molar mass | 392.32 |
Density | 1.7 g/cm3 |
Melting point | ~350 °C[1] |
Structure | |
Monoclinic, P21/c | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Perylenetetracarboxylic dianhydride (PTCDA) is an organic dye molecule and an organic semiconductor. It is used as a precursor to a class of molecules known as Rylene dyes, which are useful as pigments and dyes. It is a dark red solid with low solubility in aromatic solvents. The compound has attracted much interest as an organic semiconductor.[2]
Structure
[edit]PTCDA consists of a perylene core to which two anhydride groups have been attached, one at either side. It occurs in two crystalline forms, α and β.[3] Both have the P21/c monoclinic symmetry and a density of ca. 1.7 g/cm3, which is relatively high for organic compounds. Their lattice parameters are:
Form | a | b | c | γ |
---|---|---|---|---|
α | 0.374 nm | 1.196 nm | 1.734 nm | 98.8° |
β | 0.378 nm | 1.930 nm | 1.077 nm | 83.6° |
Self-assembly and films
[edit]Use
[edit]The main industrial use of PTCDA is as a precursor to Rylene dyes.[6][7]
References
[edit]Wikimedia Commons has media related to PTCDA.
- ^ PTCDA.
- ^ Russell, James C.; Blunt, Matthew O.; Goretzki, Gudrun; Phillips, Anna G.; Champness, Neil R.; Beton, Peter H. (2010). "Solubilized Derivatives of Perylenetetracarboxylic Dianhydride (PTCDA) Adsorbed on Highly Oriented Pyrolytic Graphite". Langmuir. 26 (6): 3972–3974. doi:10.1021/la903335v. ISSN 0743-7463.
- ^ Möbus, M. & Karl, N. (1992). "Structure of perylene-tetracarboxylic-dianhydride thin films on alkali halide crystal substrates". Journal of Crystal Growth. 116 (3–4): 495–504. doi:10.1016/0022-0248(92)90658-6.
- ^ Iwata, Kota; Yamazaki, Shiro; Mutombo, Pingo; Hapala, Prokop; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki (2015). "Chemical structure imaging of a single molecule by atomic force microscopy at room temperature". Nature Communications. 6: 7766. doi:10.1038/ncomms8766. PMC 4518281. PMID 26178193.
- ^ Cochrane, K. A.; Schiffrin, A.; Roussy, T. S.; Capsoni, M.; Burke, S. A. (2015). "Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures". Nature Communications. 6: 8312. doi:10.1038/ncomms9312. PMC 4600718. PMID 26440933.
- ^ Hunger, K. and Herbst, W. (2012) "Pigments, Organic" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a20_371
- ^ Greene, M. (2009) "Perylene Pigments", pp. 261–274 in High Performance Pigments, Wiley-VCH, Weinheim.doi:10.1002/9783527626915.ch16