Abstract
Moral foundations theory (MFT) holds that moral judgements are driven by modular and ideologically variable moral foundations but where and how these foundations are represented in the brain and shaped by political beliefs remains an open question. Using a moral vignette judgement task (n = 64), we probed the neural (dis)unity of moral foundations. Univariate analyses revealed that moral judgement of moral foundations, versus conventional norms, reliably recruits core areas implicated in theory of mind. Yet, multivariate pattern analysis demonstrated that each moral foundation elicits dissociable neural representations distributed throughout the cortex. As predicted by MFT, individuals’ liberal or conservative orientation modulated neural responses to moral foundations. Our results confirm that each moral foundation recruits domain-general mechanisms of social cognition but also has a dissociable neural signature malleable by sociomoral experience. We discuss these findings in view of unified versus dissociable accounts of morality and their neurological support for MFT.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
24,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
111,21 € per year
only 9,27 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The behavioural data that support the findings of this study as well as the Supplemental Information and experimental stimuli are available at The Open Science Framework platform (https://osf.io/dfmu6/). The meta-analytic map associated with the term ‘moral’ can be retrieved from neurosynth: https://www.neurosynth.org/analyses/terms/moral/. ROI were selected from a parcellation created using a whole-brain parcellation based on meta-analytic functional co-activation of the neurosynth database (parcellation available at https://neurovault.org/images/395092/). MRI data are available upon request. Our IRB approval states that these data can be shared for the purpose of reproducing or extending our results by researchers who agree to participant protection and privacy stipulations.
Code availability
All custom code required to reproduce the results in this paper can be found at https://github.com/medianeuroscience/mft_vignettes.
References
Graham, J. et al. in Atlas of Moral Psychology (eds Gray, K. & Graham, J.) 211–222 (Guilford Press, 2018).
Sinnott-Armstrong, W. & Wheatley, T. The disunity of morality and why it matters to philosophy. Monist 95, 355–377 (2012).
Kohlberg, L. in Handbook of Socialization (ed. Goslin, D.) 347– 480 (Academic Press, 1969).
Gray, K., Schein, C. & Ward, A. F. The myth of harmless wrongs in moral cognition: automatic dyadic completion from sin to suffering. J. Exp. Psychol. Gen. 143, 1600–1615 (2014).
Gray, K., Young, L. & Waytz, A. Mind perception is the essence of morality. Psychol. Inq. 23, 101–124 (2012).
Parkinson, C. et al. Is morality unified? Evidence that distinct neural systems underlie moral judgments of harm, dishonesty, and disgust. J. Cogn. Neurosci. 23, 3162–3180 (2011).
Prinz, J. J. in Moral Psychology (ed. Sinnott-Armstrong, W.) 267–406 (MIT Press, 2008).
Tsoi, L., Dungan, J. A., Chakroff, A. & Young, L. L. Neural substrates for moral judgments of psychological versus physical harm. Soc. Cogn. Affect. Neurosci. 13, 460–470 (2018).
Wasserman, E. A., Chakroff, A., Saxe, R. & Young, L. Illuminating the conceptual structure of the space of moral violations with searchlight representational similarity analysis. NeuroImage 159, 371–387 (2017).
Graham, J. et al. in Advances in Experimental Social Psychology Vol. 47, 55–130 (eds Zanna, M. P. et al.) (Academic Press, 2013).
Greenwald, A. G. There is nothing so theoretical as a good method. Perspect. Psychol. Sci. 7, 99–108 (2012).
Weber, R., Fisher, J. T., Hopp, F. R. & Lonergan, C. Taking messages into the magnet: method–theory synergy in communication neuroscience. Commun. Monogr. 85, 81–102 (2018).
Haidt, J. The new synthesis in moral psychology. Science 316, 998–1002 (2007).
Iyer, R., Koleva, S., Graham, J., Ditto, P. & Haidt, J. Understanding libertarian morality: the psychological dispositions of self-identified libertarians. PLoS ONE 7, e42366 (2012).
Sperber, D. in The Innate Mind: Structure and Contents (eds Carruthers, P. et al.) 53–68 (Oxford Univ. Press, 2005).
Cosmides, L. & Tooby, J. in Mapping the Mind: Domain Specificity in Cognition and Culture (eds Hirschfeld, L. A. & Gelman, S. A.) 85–116 (Cambridge Univ. Press, 1994).
Suhler, C. L. & Churchland, P. Can innate, modular ‘foundations’ explain morality? Challenges for Haidt’s moral foundations theory. J. Cogn. Neurosci. 23, 2103–2116 (2011).
Haidt, J. & Joseph, C. How moral foundations theory succeeded in building on sand: a response to Suhler and Churchland. J. Cogn. Neurosci. 23, 2117–2122 (2011).
Eres, R., Louis, W. R. & Molenberghs, P. Common and distinct neural networks involved in fMRI studies investigating morality: an ALE meta-analysis. Soc. Neurosci. 13, 384–398 (2018).
Greene, J. & Haidt, J. How (and where) does moral judgment work? Trends Cogn. Sci. 6, 517–523 (2002).
Han, H. Neural correlates of moral sensitivity and moral judgment associated with brain circuitries of selfhood: a meta-analysis. J. Moral Educ. 46, 97–113 (2017).
Sevinc, G. & Spreng, R. N. Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions. PLoS ONE 9, e87427 (2014).
Graham, J., Haidt, J. & Nosek, B. A. Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96, 1029–1046 (2009).
Kivikangas, J. M., Fernández-Castilla, B., Järvelä, S., Ravaja, N. & Lönnqvist, J.-E. Moral foundations and political orientation: systematic review and meta-analysis. Psychol. Bull. 147, 55–94 (2021).
Lewis, G. J., Kanai, R., Bates, T. C. & Rees, G. Moral values are associated with individual differences in regional brain volume. J. Cogn. Neurosci. 24, 1657–1663 (2012).
Nash, K., Baumgartner, T. & Knoch, D. Group-focused morality is associated with limited conflict detection and resolution capacity: neuroanatomical evidence. Biol. Psychol. 123, 235–240 (2017).
Clifford, S., Iyengar, V., Cabeza, R. & Sinnott-Armstrong, W. Moral foundations vignettes: a standardized stimulus database of scenarios based on moral foundations theory. Behav. Res. Methods 47, 1178–1198 (2015).
Sevinc, G., Gurvit, H. & Spreng, R. N. Salience network engagement with the detection of morally laden information. Soc. Cogn. Affect. Neurosci. 12, 1118–1127 (2017).
Nichols, T., Brett, M., Andersson, J., Wager, T. & Poline, J. B. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660 (2005).
Feldman Hall, O. & Mobbs, D. in Brain Mapping: An Encyclopedic Reference (eds Toga, A. W. & Lieberman, M. D.) 205–210 (Elsevier, 2015).
Young, L. & Dungan, J. Where in the brain is morality? Everywhere and maybe nowhere. Soc. Neurosci. 7, 1–10 (2012).
Young, L. & Saxe, R. An FMRI investigation of spontaneous mental state inference for moral judgment. J. Cogn. Neurosci. 21, 1396–1405 (2009).
Young, L., Scholz, J. & Saxe, R. Neural evidence for ‘intuitive prosecution’: the use of mental state information for negative moral verdicts. Soc. Neurosci. 6, 302–315 (2011).
Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).
Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).
Pereira, F. & Botvinick, M. Information mapping with pattern classifiers: a comparative study. Neuroimage 56, 476–496 (2011).
Kriegeskorte, N., Mur, M. & Bandettini, P. A. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 24, 4 (2008).
Reimers, N. & Gurevych, I. Sentence-BERT: sentence embeddings using Siamese BERT-networks. Preprint at https://arxiv.org/abs/1908.10084(2019).
Diedrichsen, J. et al. Comparing representational geometries using whitened unbiased-distance-matrix similarity. Preprint at https://arxiv.org/abs/2007.02789 (2020).
Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from human brain activity. Nature 452, 352–355 (2008).
Lescroart, M. D. & Gallant, J. L. Human scene-selective areas represent 3D configurations of surfaces. Neuron 101, 178–192 (2019).
Gantman, A., Devraj-Kizuk, S., Mende-Siedlecki, P., Van Bavel, J. J. & Mathewson, K. E. The time course of moral perception: an ERP investigation of the moral pop-out effect. Soc. Cogn. Affect. Neurosci. 15, 235–246 (2020).
Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).
Amit, E. & Greene, J. D. You see, the ends don’t justify the means: visual imagery and moral judgment. Psychol. Sci. 23, 861–868 (2012).
Caruso, E. M. & Gino, F. Blind ethics: closing one’s eyes polarizes moral judgments and discourages dishonest behavior. Cognition 118, 280–285 (2011).
Kahane, G. et al. The neural basis of intuitive and counterintuitive moral judgment. Soc. Cogn. Affect. Neurosci. 7, 393–402 (2012).
Graham, J. et al. Mapping the moral domain. J. Pers. Soc. Psychol. 101, 366 (2011).
McFarquhar, M. Modeling group-level repeated measurements of neuroimaging data using the univariate general linear model. Front. Neurosci. 13, 352 (2019).
Heath, S. et al. Neural mechanisms underlying the facilitation of naming in aphasia using a semantic task: an fMRI study. BMC Neurosci. 13, 1–19 (2012).
Brunet, E., Sarfati, Y., Hardy-Baylé, M. C. & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11, 157–166 (2000).
Leong, Y. C., Chen, J., Willer, R. & Zaki, J. Conservative and liberal attitudes drive polarized neural responses to political content. Proc. Natl Acad. Sci. USA 117, 27731–27739 (2020).
Kanai, R., Feilden, T., Firth, C. & Rees, G. Political orientations are correlated with brain structure in young adults. Curr. Biol. 21, 677–680 (2011).
Van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30, 829–858 (2009).
Northoff, G. et al. Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage 31, 440–457 (2006).
Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).
Graham, J. Explaining away differences in moral judgment: comment on Gray and Keeney (2015). Soc. Psychol. Pers. Sci. 6, 869–873 (2015).
Kragel, P. A. & LaBar, K. S. Decoding the nature of emotion in the brain. Trends Cogn. Sci. 20, 444–455 (2016).
Woo, C. W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).
Haidt, J., & Joseph, C. in The Innate Mind (eds Carruthers, P. et al.) 367–391 (Oxford Univ. Press, 2007).
Sinnott-Armstrong, W. in Moral Brains: The Neuroscience of Morality (ed. Liao, S. M.) 331–354 (Oxford Univ. Press, 2016).
Horikawa, T. & Kamitani, Y. Generic decoding of seen and imagined objects using hierarchical visual features. Nat. Commun. 8, 15037 (2017).
Gantman, A. P. & Van Bavel, J. J. Moral perception. Trends Cogn. Sci. 19, 631–633 (2015).
Amodio, D. M., Jost, J. T., Master, S. L. & Yee, C. M. Neurocognitive correlates of liberalism and conservatism. Nat. Neurosci. 10, 1246–1247 (2007).
Doğruyol, B., Alper, S. & Yilmaz, O. The five-factor model of the moral foundations theory is stable across WEIRD and non-WEIRD cultures. Pers. Individ. Diff. 151, 109547 (2019).
Atari, M. et al. Morality beyond the WEIRD: how the nomological network of morality varies across cultures. Preprint at https://psyarxiv.com/q6c9r/ (2022).
Crone, D. L., Bode, S., Murawski, C. & Laham, S. M. The socio-moral image database (SMID): a novel stimulus set for the study of social, moral and affective processes. PLoS ONE 13, e0190954 (2018).
McCurrie, C. H., Crone, D. L., Bigelow, F. & Laham, S. M. Moral and affective film set (MAAFS): a normed moral video database. PLoS ONE 13, e0206604 (2018).
Schein, C. The importance of context in moral judgments. Perspect. Psychol. Sci. 15, 207–215 (2020).
Curry, O. S. in The Evolution of Morality (eds Shackelford, T. K. & Hansen, R. D.) 27–51 (Springer International Publishing, 2016).
McCaffrey, J. & Wright, J. in Neuroscience and Philosophy (eds De Brigard, F. & Sinnott-Armstrong, W.) 427–466 (MIT Press, 2022).
Sullivan, J. A. Coordinated pluralism as a means to facilitate integrative taxonomies of cognition. Philos. Explor. 20, 129–145 (2017).
Christensen, R. H. B. Analysis of Ordinal Data with Cumulative Link Models—Estimation with the R-package Ordinal (2015); http://people.vcu.edu/~dbandyop/BIOS625/CLM_R.pdf (R Development Core Team, 2011).
Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-24. 2014 (2015).
Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).
Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).
Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R. & Collins, D. L. Unbiased non-linear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, S102 (2009).
Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).
Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR Biomed. 10, 171–178 (1997).
Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).
Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).
Lanczos, C. Evaluation of noisy data. J. Soc. Ind. Appl. Math. B 1, 76–85 (1964).
Notter, M. P. et al. AtlasReader: a Python package to generate coordinate tables, region labels, and informative figures from statistical MRI images. J. Open Source Softw. 4, 1257 (2019).
Gale, D. J., de Wael, R. V., Benkarim, O. & Bernhardt, B. Surfplot: publication-ready brain surface figures (v0.1.0). Zenodo https://doi.org/10.5281/zenodo.5567926 (2021).
Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).
Chang, L., Jolly, E., Cheong, J. H., Burnashev, A. & Chen, A. cosanlab/nltools: 0.3.11 Zenodo https://zenodo.org/record/2229813(2018).
Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).
Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. A sensitive and specific neural signature for picture-induced negative affect. PLoS Biol. 13, e1002180 (2015).
Schütt, H. H., Lin, B., Diedrichsen, J. & Kriegeskorte, N. Python representational similarity analysis toolbox (rsatoolbox). Github https://github.com/rsagroup/rsatoolbox/ (2019).
Walther, A. et al. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 137, 188–200 (2016).
Schütt, H. H., Kipnis, A. D., Diedrichsen, J. & Kriegeskorte, N. Statistical inference on representational geometries. Preprint at https://arxiv.org/abs/2112.09200 (2021).
Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).
Acknowledgements
F.R.H. was supported by a George D. McCune Dissertation fellowship, Department of Communication, University of California Santa Barbara. R.W. acquired funding from the Army Research Lab, grant no. W911NF-15-2-0115. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
F.R.H., O.A., S.G., W.S.A. and R.W. conceived of this work. F.R.H., J.T.F. and R.W. undertook data curation. O.A. and R.W. conducted the investigation. F.R.H. and R.W. did the formal analysis. F.R.H. produced the visualizations. O.A., J.T.F. and R.W. were responsible for validation. R.W. undertook supervision, project administration and funding acquisition. F.R.H. wrote the original paper. O.A., J.T.F., S.G., W.S.A. and R.W. reviewed and edited the final paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Human Behaviour thanks Lily Tsoi, Jonathan Haidt and Mark Thornton for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hopp, F.R., Amir, O., Fisher, J.T. et al. Moral foundations elicit shared and dissociable cortical activation modulated by political ideology. Nat Hum Behav 7, 2182–2198 (2023). https://doi.org/10.1038/s41562-023-01693-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-023-01693-8