Skip to main content

Advertisement

Log in

The Relationship Between Sleep, Epilepsy, and Development: a Review

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the relationship between sleep, neurodevelopment, and epilepsy and potential underlying physiological mechanisms.

Recent Findings

Recent studies have advanced our understanding of the role of sleep in early brain development and epilepsy. Epileptogenesis has been proposed to occur when there is a failure of normal adaptive processes of synaptic and homeostatic plasticity. This sleep-dependent transformation may explain the cognitive impairment seen in epilepsy, especially when occurring early in life. The glymphatic system, a recently discovered waste clearance system of the central nervous system, has been described as a potential mechanism underlying the relationship between sleep and seizures and may account for the common association between sleep deprivation and increased seizure risk.

Summary

Epilepsy and associated sleep disturbances can critically affect brain development and neurocognition. Here we highlight recent findings on this topic and emphasize the importance of screening for sleep concerns in people with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Vietnam)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mukai Y, Yamanaka A. Functional roles of REM sleep. Neurosci Res. 2023;189:44–53.

    Article  PubMed  Google Scholar 

  2. Ng M, Pavlova M. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res Treat. 2013;2013:1–10.

    Article  Google Scholar 

  3. Kotagal P, Yardi N. The relationship between sleep and epilepsy. Semin Pediatr Neurol. 2008;15:42–9.

    Article  PubMed  Google Scholar 

  4. Kumar P, Rajar TR. Seizure susceptibility decreases with enhancement of rapid eye movement sleep. Brain Res. 2001;922:299–304.

    Article  CAS  PubMed  Google Scholar 

  5. Knoop MS, De Groot ER, Dudink J. Current ideas about the roles of rapid eye movement and non–rapid eye movement sleep in brain development. Acta Paediatr. 2021;110:36–44.

    Article  PubMed  Google Scholar 

  6. Roliz AH, Kothare S. The interaction between sleep and epilepsy. Curr Neurol Neurosci Rep. 2022;22:551–63.

    Article  CAS  PubMed  Google Scholar 

  7. Vecchierini M-F, D’Allest A-M, Verpellat P. EEG patterns in 10 extreme premature neonates with normal neurological outcome: qualitative and quantitative data. Brain Dev. 2003;25:330–7.

    Article  PubMed  Google Scholar 

  8. Bourel-ponchel E, Hasaerts D. Behavioral-state development and sleep-state differentiation during early ontogenesis. Neurophysiol Clin / Clin Neurophysiol. 2021;51:89–98.

    Article  Google Scholar 

  9. Roffwarg HP, Muzio JN, Dement WC. Ontogenetic development of the human sleep-dream cycle. Published by: American Association for the Advancement of Science Stable URL: https://www.jstor.org/stable/1718980. 1966;152:604–19.

  10. Lokhandwala S, Spencer RMC. Relations between sleep patterns early in life and brain development: a review. Dev Cogn Neurosci. 2022;56:101130.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ravassard P, Hamieh AM, Joseph MA, Fraize N, Libourel PA, Lebarillier L, et al. REM sleep-dependent bidirectional regulation of hippocampal-based emotional memory and LTP. Cereb Cortex. 2016;26:1488–500.

    Article  PubMed  Google Scholar 

  12. Ishikawa A, Kanayama Y, Matsumura H, Tsuchimochi H, Ishida Y, Nakamura S. Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur J Neurosci. 2006;24:243–8.

    Article  PubMed  Google Scholar 

  13. Zhou Y, Lai CSW, Bai Y, Li W, Zhao R, Yang G, et al. REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat Commun. 2020;11:1–12.

    Article  CAS  Google Scholar 

  14. Li W, Ma L, Yang G, Gan WB. REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci. 2017;20:427–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaffery JP, Lopez J, Bissette G, Roffwarg HP. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex. Neurosci Lett. 2006;393:131–5.

    Article  CAS  PubMed  Google Scholar 

  16. Buchmann A, Ringli M, Kurth S, et al. EEG sleep slow-wave activity as a mirror of cortical maturation. Cereb Cortex. 2011;21(3):607–15.

    Article  PubMed  Google Scholar 

  17. Chan M, Wong TCH, Weichard A, Nixon GM, Walter LM, Horne RSC. Sleep macro-architecture and micro-architecture in children born preterm with sleep disordered breathing. Pediatr Res. 2020;87:703–10.

    Article  PubMed  Google Scholar 

  18. Perkinson-gloor N, Arx PH, Brand S, Holsboer-trachsler E, Grob A, Weber P, et al. The role of sleep and the hypothalamic-pituitary-adrenal axis for behavioral and emotional problems in very preterm children during middle childhood. J Psychiatr Res. 2015;60:141–7.

    Article  PubMed  Google Scholar 

  19. Lopez J, Roffwarg HP, Dreher A, Bissette G, Karolewicz B, Shaffery JP. Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development. Neuroscience. 2008;153:44–53.

    Article  CAS  PubMed  Google Scholar 

  20. Freudigman KA, Thoman EB. Infant sleep during the first postnatal day: an opportunity for assessment of vulnerability. Pediatrics. 1993;92(3):373–9.

    CAS  PubMed  Google Scholar 

  21. Shellhaas RA, Burns JW, Hassan F, Carlson MD, Barks JDE, Chervin RD. Neonatal sleep-wake analyses predict 18-month neurodevelopmental outcomes. Sleep. 2017;40:1–9.

    Article  Google Scholar 

  22. Bijlsma A, Beunders VAA, Dorrepaal DJ, Joosten KFM, van Beijsterveldt IALP, Dudink J, et al. Sleep and 24-hour rhythm characteristics in preschool children born very-preterm and full-term. J Clin Sleep Med. 2023;19:639–40.

    Article  Google Scholar 

  23. Morse AM, Kothare SV. Does sleep correlate with neurodevelopmental outcomes in preterm and term infants in early-preschool children? J Clin Sleep Med. 2023;19:639–40.

    Article  PubMed  Google Scholar 

  24. Halász P, Szűcs A. Sleep and epilepsy link by plasticity. Front Neurol. 2020;11:1–25.

    Article  Google Scholar 

  25. Steriade M. Neuronal substrates of sleep and epilepsy. Cambridge: Cambridge University Press; 2003.

    Google Scholar 

  26. Hebbes D. The organization of behavior. New York: Wiley; 1949.

    Google Scholar 

  27. Bliss TVP, Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232:357–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuhn M, Wolf E, Maier JG, Mainberger F, Feige B, Schmid H, et al. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex. Nat Commun. 2016;7:1–9.

    Article  Google Scholar 

  29. Arshavsky YI. Memory: synaptic or cellular, that is the question. Neurosci. 2022;00:1–16.

    Google Scholar 

  30. Issa NP, Nunn KC, Wu S, Haider HA, Tao JX. Putative roles for homeostatic plasticity in epileptogenesis. Epilepsia. 2023;64:539–52.

    Article  PubMed  Google Scholar 

  31. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10:49–62.

    Article  PubMed  Google Scholar 

  32. Tononi G, Cirelli C. Sleep and the price of plasticity. Neuron. 2014;23:1–7.

    Google Scholar 

  33. Bushey D, Tononi G, Cirelli C. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science. 2011;332:1576–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maret S, Faraguna U, Nelson AB, Cirelli C, Tononi G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci. 2011;14:1418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang G, Gan WB. Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex. Dev Neurobiol. 2012;72:1391–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, et al. Patterns of regional brain activation associated with different forms of motor learning. Brain Res. 2000;871:127–45.

    Article  CAS  PubMed  Google Scholar 

  37. Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430:78–81.

    Article  CAS  PubMed  Google Scholar 

  38. Lignani G, Baldelli P, Marra V. Homeostatic plasticity in epilepsy. Front Cell Neurosci. 2020;14:1–9.

    Article  Google Scholar 

  39. Canet E, Gaultier C, D’Allest A, Dehan M. Effects of sleep deprivation on respiratory events during sleep in healthy infants. J Appl Physiol. 1979;66:1158–63.

    Article  Google Scholar 

  40. Frank MG. Erasing synapses in sleep: is it time to be SHY? Neural Plast. 2012;2012:1–25.

    Article  Google Scholar 

  41. Zanzmera P, Shukla G, Gupta A, Singh H, Goyal V, Srivastava A, et al. Markedly disturbed sleep in medically refractory compared to controlled epilepsy - a clinical and polysomnography study. Seizure. 2012;21:487–90.

    Article  PubMed  Google Scholar 

  42. Calvello C, Fernandes M, Lupo C, Maramieri E, Placidi F, Izzi F, et al. Sleep architecture in drug-naïve adult patients with epilepsy: comparison between focal and generalized epilepsy. Epilepsia Open. 2023;8:165–72.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Winsor AA, Richards C, Bissell S, Seri S, Liew A, Bagshaw AP. Sleep disruption in children and adolescents with epilepsy: a systematic review and meta-analysis. Sleep Med Rev. 2021;57:101416.

    Article  PubMed  Google Scholar 

  44. Manokaran RK, Tripathi M, Chakrabarty B, Pandey RM, Gulati S. Sleep abnormalities and polysomnographic profile in children with drug-resistant epilepsy. Seizure. 2020;82:59–64.

    Article  PubMed  Google Scholar 

  45. Pereira AM, Bruni O, Ferri R, Palmini A, Nunes ML. The impact of epilepsy on sleep architecture during childhood. Epilepsia. 2012;53:1519–25.

    Article  PubMed  Google Scholar 

  46. Yeh WC, Lai CL, Wu MN, Lin HC, Lee KW, Li YS, et al. Rapid eye movement sleep disturbance in patients with refractory epilepsy: a polysomnographic study. Sleep Med. 2021;81:101–8.

    Article  PubMed  Google Scholar 

  47. Mekky JF, Elbhrawy SM, Boraey MF, Omar HM. Sleep architecture in patients with juvenile myoclonic epilepsy. Sleep Med Elsevier Ltd. 2017;38:116–21.

    Article  Google Scholar 

  48. Scarlatelli-Lima AV, Sukys-Claudino L, Watanabe N, Guarnieri R, Walz R, Lin K. How do people with drug-resistant mesial temporal lobe epilepsy sleep? A clinical and video-EEG with EOG and submental EMG for sleep staging study. eNeurologicalSci. 2016;4:34–41.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ikoma Y, Takahashi Y, Sasaki D, Matsui K. Properties of REM sleep alterations with epilepsy. Brain. 2023;00:1–12.

    Google Scholar 

  50. Sadak U, Honrath P, Ermis U, Heckelmann J, Meyer T, Weber Y, et al. Reduced REM sleep: a potential biomarker for epilepsy – a retrospective case-control study. Seizure Elsevier Ltd. 2022;98:27–33.

    Article  Google Scholar 

  51. Schiller K. Focal epilepsy impacts rapid eye movement sleep microstructure. Sleep. 2023;46:1–12.

    Article  Google Scholar 

  52. Schiller K, Avigdor T, Abdallah C, Sziklas V, Crane J, Stefani A, et al. Focal epilepsy disrupts spindle structure and function. Sci Rep. 2022;12:11137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oyegbile-chidi T, Harvey D, Dunn D, Jones J, Hermann B, Byars A, et al. Pediatric neurology characterizing sleep phenotypes in children with newly diagnosed epilepsy. Pediatr Neurol. 2022;137:34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jethwa S, Pressler RM, Kaya D, Datta AN. Sleep architecture in neonatal and infantile onset epilepsies in the first six months of life: a scoping review. Eur J Paediatr Neurol. 2022;41:99–108.

    Article  PubMed  Google Scholar 

  55. Tassinari CA, Rubboli G. Encephalopathy related to status epilepticus during slow sleep: current concepts and future directions. Epileptic Disord. 2019;21:S82–7.

    Google Scholar 

  56. Rubboli G, Gardella E, Cantalupo G, Tassinari C. Encephalopathy related to status epilepticus during slow sleep (ESES): pathophysiological insights and nosological considerations. Epilepsy Behav. 2023;140:109105.

    Article  PubMed  Google Scholar 

  57. Proost R, Lagae L, Van Paesschen W, Jansen K. Sleep in children with refractory epilepsy and epileptic encephalopathies: a systematic review of literature. Eur J Paediatr Neurol Elsevier Ltd. 2022;38:53–61.

    Article  CAS  Google Scholar 

  58. Frucht MM, Quigg M, Schwaner C, Fountain NB. Distribution of seizure precipitants among epilepsy syndromes. 2000;41:1534–9.

    CAS  Google Scholar 

  59. Dinner D. Effect of sleep on epilepsy. J Clin Neurophysiol. 2022;19:504–13.

    Article  Google Scholar 

  60. Rowan AJ, Veldhuisen RJ, Nagelkerke NJ. Comparative evaluation of sleep deprivation and sedated sleep EEGs as diagnostic aids in epilepsy. Electroencephalogr Clin Neurophysiol. 1982;54:357–64.

    Article  CAS  PubMed  Google Scholar 

  61. Degen R. A study of the diagnostic value of waking and sleep EEGs after sleep deprivation in epileptic patients on anticonvulsive therapy. Clin Neurophysiol. 1980;49:577–84.

    Article  CAS  Google Scholar 

  62. Rossi KC, Joe J, Makhija MGD. Insufficient sleep, electroencephalogram activation, and seizure risk: re-evaluating the evidence. Ann Neurol. 2020;87:798–806.

    Article  PubMed  Google Scholar 

  63. Díaz-Negrillo A. Influence of sleep and sleep deprivation on ictal and interictal epileptiform activity. Epilepsy Res Treat. 2013;2013.

  64. Malow BA, Passaro E, Milling C, Minecan DN, Levy K. Sleep deprivation does not affect seizure frequency during inpatient video-EEG monitoring. Neurology. 2002;59(9):1371–4.

    Article  CAS  PubMed  Google Scholar 

  65. Cobabe MM, Sessler DI, Nowacki AS, Rourke CO, Andrews N, Foldvary-schaefer N. Impact of sleep duration on seizure frequency in adults with epilepsy: a sleep diary study. Epilepsy Behav. 2015;43:143–8.

    Article  PubMed  Google Scholar 

  66. Dell KL, Payne DE, Kremen V, Maturana MI, Gerla V, Nejedly P, et al. Seizure likelihood varies with day-to-day variations in sleep duration in patients with refractory focal epilepsy: a longitudinal electroencephalography investigation. EClinicalMedicine. 2021;37:100934.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stirling RE, Hidajat CM, Grayden DB, et al. Sleep and seizure risk in epilepsy: bed and wake times are more important than sleep duration. Brain. 2023;146(7):2803–13.

    Article  PubMed  Google Scholar 

  68. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4:1–22.

    Article  Google Scholar 

  69. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180–93.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Christensen J, Yamakawa GR, Shultz SR, Mychasiuk R. Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties. Prog Neurobiol. 2020;198:101917.

    Article  PubMed  Google Scholar 

  71. Bishir M, Bhat A, Essa MM, Ekpo O, Ihunwo AO, Veeraraghavan VP, et al. Sleep deprivation and neurological disorders. Biomed Res Int. 2020;2020:1–19.

    Article  Google Scholar 

  72. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–7.

    Article  CAS  PubMed  Google Scholar 

  73. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698:6–18.

    Article  CAS  PubMed  Google Scholar 

  75. Rabinovitch A, Aviramd I, Biton Y, Braunstein D. A combined astrocyte – G-lymphatic model of epilepsy initiation, maintenance and termination. Med Hypotheses. 2019;133:109384.

    Article  PubMed  Google Scholar 

  76. Hadaczek P, Yamashita Y, Mirek H, Noble C, Park J, Bankiewicz K. The, “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules. Mol Ther. 2006;14:69–78.

    Article  CAS  PubMed  Google Scholar 

  77. Buysse DJ, Reynolds CF III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.

    Article  CAS  PubMed  Google Scholar 

  78. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540–5.

    Article  CAS  PubMed  Google Scholar 

  79. Drake C, Nickel C, Burduvali E, Roth T, Jefferson C, Badia P. The pediatric daytime sleepiness scale (PDSS): sleep habits and school outcomes in middle-school children. Sleep. 2003;26:455–8.

    PubMed  Google Scholar 

  80. Spilsbury JC, Drotar D, Rosen CL, Redline S. The Cleveland Adolescent Sleepiness Questionnaire: a new measure to assess excessive daytime sleepiness in adolescents. J Clin Sleep Med. 2007;3:603–12.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yu JL, Rosen I. Utility of the modified Mallampati grade and Friedman tongue position in the assessment of obstructive sleep apnea. J Clin Sleep Med. 2020;16:303–8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S, et al. STOP questionnaire. Anesthesiology. 2008;108:812–21.

    Article  PubMed  Google Scholar 

  83. Chung F, Subramanyam R, Liao P, Sasaki E, Shapiro C, Sun Y. High STOP-Bang score indicates a high probability of obstructive sleep apnoea. Br J Anaesth. 2012;108:768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chervin RD. Pediatric sleep questionnaire (PSQ): validity and reliability of scales for sleep-disordered breathing, snoring, sleepiness, and behavioral problems. Sleep Med. 2000;1:21–32.

    Article  CAS  PubMed  Google Scholar 

  85. Shahid A, Wilkinson K, Marcu S, Shapiro CM. STOP. THAT and one hundred other sleep scales. STOP: THAT one hundred other sleep scales; 2012. p. 1–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kothare.

Ethics declarations

Conflict of Interest

Annie Roliz does not have existing conflicts of interest. Sanjeev Kothare does not have existing conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roliz, A.H., Kothare, S. The Relationship Between Sleep, Epilepsy, and Development: a Review. Curr Neurol Neurosci Rep 23, 469–477 (2023). https://doi.org/10.1007/s11910-023-01284-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01284-0

Keywords