Skip to main content

Advertisement

Log in

Enhancement of Hole Extraction in Carbon-Based Organic–Inorganic Hybrid Perovskite Solar Cells Using MAPbI3:NiO-NPs Composite

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this article, a combination of spherical and oval NiO nanoparticles were synthesized through the co-precipitation method and incorporated into a MAPbI3-based perovskite layer (MAPbI3:NiO) to enhance hole extraction in carbon-based perovskite solar cells (CPSCs). Field-emission scanning electron microscopy (FESEM) images of the MAPbI3 and MAPbI3:NiO NPs composite layers confirmed the formation of needle-like grains. The incorporation of NiO NPs in the perovskite layer enhanced both the crystallinity and the grain size of the film. Moreover, the NiO composited films showed maximum absorbance in the visible region and significantly quenched emission peak in the photoluminescence (PL) emission spectrum. Because of the materials’ outstanding characteristics, the NiO composite perovskite device achieved power conversion efficiency (PCE) of 9.75%. In addition, the effect of adding a spacer layer in the same device architecture was also studied. The results showed an enhancement of the open-circuit voltage (Voc) from 862 mV to 988 mV, making the device a champion with PCE of ~11%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Vietnam)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Zheng, Q. Zhu, M. Abdellah, M.E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S.E. Canton, and T. Pullerits, Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 6, 2969 (2015).

    Article  CAS  Google Scholar 

  2. Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi, and J. Huang, Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater. Sci. Eng. R Rep. 101, 1 (2016).

    Article  Google Scholar 

  3. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B.R. Ecker, Y. Gao, M.A. Loi, and L. Cao, Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333 (2016).

    Article  CAS  Google Scholar 

  4. M. Li, Z.-K. Wang, T. Kang, Y. Yang, X. Gao, C.-S. Hsu, Y. Li, and L.-S. Liao, Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy 43, 47 (2018).

    Article  CAS  Google Scholar 

  5. G. Sadoughi, D.E. Starr, E. Handick, S.D. Stranks, M. Gorgoi, R.G. Wilks, M. Bär, and H.J. Snaith, Observation and mediation of the presence of metallic lead in organic–inorganic perovskite films. ACS Appl. Mater. Interfaces 7, 13440 (2015).

    Article  CAS  Google Scholar 

  6. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, and Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730 (2015).

    Article  CAS  Google Scholar 

  7. J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B.-W. Mao, and N. Zheng, Efficient, hysteresis-free, and stable perovskite solar cells with zno as electron-transport layer: effect of surface passivation, advanced materials. Adv. Mater. 30, 1705596 (2018).

    Article  Google Scholar 

  8. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, and S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602 (2015).

    Article  CAS  Google Scholar 

  9. H. Chen, Y. Chen, T. Zhang, X. Liu, X. Wang, and Y. Zhao, Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2, 2000130 (2021).

    Article  CAS  Google Scholar 

  10. J. Kim, N. Park, J.S. Yun, S. Huang, M.A. Green, and A.W.Y. Ho-Baillie, An effective method of predicting perovskite solar cell lifetime—case study on planar CH3NH3PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. Sol. Energy. Mater. Sol. Cells 162, 41 (2017).

    Article  CAS  Google Scholar 

  11. Y. Zhang, M. Elawad, Z. Yu, X. Jiang, J. Lai, and L. Sun, Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping. RSC Adv. 6, 108888 (2016).

    Article  CAS  Google Scholar 

  12. Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013).

    Article  Google Scholar 

  13. S. Maniarasu, T.B. Korukonda, V. Manjunath, E. Ramasamy, M. Ramesh, and G. Veerappan, Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: a route towards commercialization. Renew. Sustain. Energy Rev. 82, 845 (2018).

    Article  CAS  Google Scholar 

  14. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014).

    Article  CAS  Google Scholar 

  15. A.S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S.K. Sarkar, Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5, 1748 (2014).

    Article  CAS  Google Scholar 

  16. J.A. Christians, R.C.M. Fung, and P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758 (2014).

    Article  CAS  Google Scholar 

  17. X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, and M. Wang, Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402 (2015).

    Article  CAS  Google Scholar 

  18. Z. Liu, M. Zhang, X. Xu, L. Bu, W. Zhang, W. Li, Z. Zhao, M. Wang, Y.-B. Cheng, and H. He, p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967 (2015).

    Article  CAS  Google Scholar 

  19. J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, and Y.-J. Hsu, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107 (2014).

    Article  CAS  Google Scholar 

  20. L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y.-B. Cheng, and J. Tang, Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1, 547 (2014).

    Article  CAS  Google Scholar 

  21. A.A. Jabbar, A.J. Haider, M.J. Haider, and K.F. Al-azawi, Preparation and characterization of NiO/PSi as self-cleaning surface. J. Mater. Res. Technol. 9, 15123–15131 (2020).

    Article  CAS  Google Scholar 

  22. B. Mustafa, J. Griffin, A.S. Alsulami, D.G. Lidzey, and A.R. Buckley, Solution processed nickel oxide anodes for organic photovoltaic devices. Appl. Phys. Lett. 104, 063302 (2014).

    Article  Google Scholar 

  23. F. Jiang, W.C.H. Choy, X. Li, D. Zhang, and J. Cheng, Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 27, 2930 (2015).

    Article  CAS  Google Scholar 

  24. M.-H. Li, P.-S. Shen, K.-C. Wang, T.-F. Guo, and P. Chen, Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A 3, 9011 (2015).

    Article  CAS  Google Scholar 

  25. J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.-W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, C.S. Hwang, and S.I. Seok, Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013 (2015).

    Article  CAS  Google Scholar 

  26. X. Zheng, Z. Song, Z. Chen, S.S. Bista, P. Gui, N. Shrestha, C. Chen, C. Li, X. Yin, R.A. Awni, H. Lei, C. Tao, R.J. Ellingson, Y. Yan, and G. Fang, Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells. J. Mater. Chem. C 8, 1972 (2020).

    Article  CAS  Google Scholar 

  27. H.T. Rahal, R. Awad, A.M. Abdel-Gaber, and D. El-Said Bakeer, Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles. J. Nanomater. 2017, 9 (2017).

    Article  Google Scholar 

  28. S. Khalid, M.A. Malik, D.J. Lewis, P. Kevin, E. Ahmed, Y. Khan, and P. O’Brien, Transition metal doped pyrite (FeS2) thin films: structural properties and evaluation of optical band gap energies. J. Mater. Chem. C 3, 12068 (2015).

    Article  CAS  Google Scholar 

  29. C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).

    Article  CAS  Google Scholar 

  30. I. Robinson and R. Harder, Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291 (2009).

    Article  CAS  Google Scholar 

  31. A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251 (2011).

    Article  Google Scholar 

  32. J. Bahadur, A.H. Ghahremani, S. Gupta, T. Druffel, M.K. Sunkara, and K. Pal, Enhanced moisture stability of MAPbI3 perovskite solar cells through barium doping. Sol. Energy 190, 396 (2019).

    Article  CAS  Google Scholar 

  33. N. Besra, S. Pal, B.K. Das, and K.K. Chattopadhyay, Perovskites beyond photovoltaics: field emission from morphology-tailored nanostructured methylammonium lead triiodide. Phys. Chem. Chem. Phys. 19, 26708 (2017).

    Article  CAS  Google Scholar 

  34. J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, Y.H. Lee, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, and M. Grätzel, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013).

    Article  CAS  Google Scholar 

  35. D.S. Mann, P. Patil, D.H. Kim, S.N. Kwon, and S.I. Na, Boron nitride-incorporated NiOx as a hole transport material for high-performance pin planar perovskite solar cells. J. Power Sources 477, 228738 (2020).

    Article  CAS  Google Scholar 

  36. Y. Yang, H. Peng, C. Liu, Z. Arain, Y. Ding, S. Ma, X. Liu, T. Hayat, A. Alsaedi, and S. Dai, Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. J. Mater. Chem. A 7, 6450 (2019).

    Article  CAS  Google Scholar 

  37. M. Yang, Y. Zeng, Z. Li, D.H. Kim, C.-S. Jiang, J. van de Lagemaat, and K. Zhu, Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys. Chem. Chem. Phys. 19, 5043 (2017).

    Article  CAS  Google Scholar 

  38. D. Gedamu, I.M. Asuo, D. Benetti, M. Basti, I. Ka, S.G. Cloutier, F. Rosei, and R. Nechache, Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Sci. Rep. 8, 12885 (2018).

    Article  Google Scholar 

  39. C.M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Atomic Energy-Board of Research in Nuclear Sciences (58/14/15/2020-BRNS/37213) and Department of Science & Technology – Solar Energy Research Initiative (DST-SERI) (DST/TMD/SERI/S76(G)), Government of India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Govindaraj.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6426 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, R.I., Govindaraj, R., Ramasamy, P. et al. Enhancement of Hole Extraction in Carbon-Based Organic–Inorganic Hybrid Perovskite Solar Cells Using MAPbI3:NiO-NPs Composite. J. Electron. Mater. 52, 7459–7474 (2023). https://doi.org/10.1007/s11664-023-10674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10674-6

Keywords

Navigation