Abstract
In this article, a combination of spherical and oval NiO nanoparticles were synthesized through the co-precipitation method and incorporated into a MAPbI3-based perovskite layer (MAPbI3:NiO) to enhance hole extraction in carbon-based perovskite solar cells (CPSCs). Field-emission scanning electron microscopy (FESEM) images of the MAPbI3 and MAPbI3:NiO NPs composite layers confirmed the formation of needle-like grains. The incorporation of NiO NPs in the perovskite layer enhanced both the crystallinity and the grain size of the film. Moreover, the NiO composited films showed maximum absorbance in the visible region and significantly quenched emission peak in the photoluminescence (PL) emission spectrum. Because of the materials’ outstanding characteristics, the NiO composite perovskite device achieved power conversion efficiency (PCE) of 9.75%. In addition, the effect of adding a spacer layer in the same device architecture was also studied. The results showed an enhancement of the open-circuit voltage (Voc) from 862 mV to 988 mV, making the device a champion with PCE of ~11%.
Graphical Abstract
Similar content being viewed by others
References
K. Zheng, Q. Zhu, M. Abdellah, M.E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S.E. Canton, and T. Pullerits, Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 6, 2969 (2015).
Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi, and J. Huang, Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater. Sci. Eng. R Rep. 101, 1 (2016).
H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B.R. Ecker, Y. Gao, M.A. Loi, and L. Cao, Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333 (2016).
M. Li, Z.-K. Wang, T. Kang, Y. Yang, X. Gao, C.-S. Hsu, Y. Li, and L.-S. Liao, Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy 43, 47 (2018).
G. Sadoughi, D.E. Starr, E. Handick, S.D. Stranks, M. Gorgoi, R.G. Wilks, M. Bär, and H.J. Snaith, Observation and mediation of the presence of metallic lead in organic–inorganic perovskite films. ACS Appl. Mater. Interfaces 7, 13440 (2015).
W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, and Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730 (2015).
J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B.-W. Mao, and N. Zheng, Efficient, hysteresis-free, and stable perovskite solar cells with zno as electron-transport layer: effect of surface passivation, advanced materials. Adv. Mater. 30, 1705596 (2018).
J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, and S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602 (2015).
H. Chen, Y. Chen, T. Zhang, X. Liu, X. Wang, and Y. Zhao, Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2, 2000130 (2021).
J. Kim, N. Park, J.S. Yun, S. Huang, M.A. Green, and A.W.Y. Ho-Baillie, An effective method of predicting perovskite solar cell lifetime—case study on planar CH3NH3PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. Sol. Energy. Mater. Sol. Cells 162, 41 (2017).
Y. Zhang, M. Elawad, Z. Yu, X. Jiang, J. Lai, and L. Sun, Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping. RSC Adv. 6, 108888 (2016).
Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013).
S. Maniarasu, T.B. Korukonda, V. Manjunath, E. Ramasamy, M. Ramesh, and G. Veerappan, Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: a route towards commercialization. Renew. Sustain. Energy Rev. 82, 845 (2018).
P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014).
A.S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S.K. Sarkar, Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5, 1748 (2014).
J.A. Christians, R.C.M. Fung, and P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758 (2014).
X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, and M. Wang, Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402 (2015).
Z. Liu, M. Zhang, X. Xu, L. Bu, W. Zhang, W. Li, Z. Zhao, M. Wang, Y.-B. Cheng, and H. He, p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967 (2015).
J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, and Y.-J. Hsu, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107 (2014).
L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y.-B. Cheng, and J. Tang, Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1, 547 (2014).
A.A. Jabbar, A.J. Haider, M.J. Haider, and K.F. Al-azawi, Preparation and characterization of NiO/PSi as self-cleaning surface. J. Mater. Res. Technol. 9, 15123–15131 (2020).
B. Mustafa, J. Griffin, A.S. Alsulami, D.G. Lidzey, and A.R. Buckley, Solution processed nickel oxide anodes for organic photovoltaic devices. Appl. Phys. Lett. 104, 063302 (2014).
F. Jiang, W.C.H. Choy, X. Li, D. Zhang, and J. Cheng, Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 27, 2930 (2015).
M.-H. Li, P.-S. Shen, K.-C. Wang, T.-F. Guo, and P. Chen, Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A 3, 9011 (2015).
J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.-W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, C.S. Hwang, and S.I. Seok, Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013 (2015).
X. Zheng, Z. Song, Z. Chen, S.S. Bista, P. Gui, N. Shrestha, C. Chen, C. Li, X. Yin, R.A. Awni, H. Lei, C. Tao, R.J. Ellingson, Y. Yan, and G. Fang, Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells. J. Mater. Chem. C 8, 1972 (2020).
H.T. Rahal, R. Awad, A.M. Abdel-Gaber, and D. El-Said Bakeer, Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles. J. Nanomater. 2017, 9 (2017).
S. Khalid, M.A. Malik, D.J. Lewis, P. Kevin, E. Ahmed, Y. Khan, and P. O’Brien, Transition metal doped pyrite (FeS2) thin films: structural properties and evaluation of optical band gap energies. J. Mater. Chem. C 3, 12068 (2015).
C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).
I. Robinson and R. Harder, Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291 (2009).
A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251 (2011).
J. Bahadur, A.H. Ghahremani, S. Gupta, T. Druffel, M.K. Sunkara, and K. Pal, Enhanced moisture stability of MAPbI3 perovskite solar cells through barium doping. Sol. Energy 190, 396 (2019).
N. Besra, S. Pal, B.K. Das, and K.K. Chattopadhyay, Perovskites beyond photovoltaics: field emission from morphology-tailored nanostructured methylammonium lead triiodide. Phys. Chem. Chem. Phys. 19, 26708 (2017).
J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, Y.H. Lee, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, and M. Grätzel, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013).
D.S. Mann, P. Patil, D.H. Kim, S.N. Kwon, and S.I. Na, Boron nitride-incorporated NiOx as a hole transport material for high-performance pin planar perovskite solar cells. J. Power Sources 477, 228738 (2020).
Y. Yang, H. Peng, C. Liu, Z. Arain, Y. Ding, S. Ma, X. Liu, T. Hayat, A. Alsaedi, and S. Dai, Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. J. Mater. Chem. A 7, 6450 (2019).
M. Yang, Y. Zeng, Z. Li, D.H. Kim, C.-S. Jiang, J. van de Lagemaat, and K. Zhu, Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? Phys. Chem. Chem. Phys. 19, 5043 (2017).
D. Gedamu, I.M. Asuo, D. Benetti, M. Basti, I. Ka, S.G. Cloutier, F. Rosei, and R. Nechache, Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Sci. Rep. 8, 12885 (2018).
C.M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).
Acknowledgments
The authors are grateful to the Department of Atomic Energy-Board of Research in Nuclear Sciences (58/14/15/2020-BRNS/37213) and Department of Science & Technology – Solar Energy Research Initiative (DST-SERI) (DST/TMD/SERI/S76(G)), Government of India, for the financial support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Daniel, R.I., Govindaraj, R., Ramasamy, P. et al. Enhancement of Hole Extraction in Carbon-Based Organic–Inorganic Hybrid Perovskite Solar Cells Using MAPbI3:NiO-NPs Composite. J. Electron. Mater. 52, 7459–7474 (2023). https://doi.org/10.1007/s11664-023-10674-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-023-10674-6