Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effects of loss of Y chromosome on male health

Abstract

Loss of Y chromosome (LOY) is the most commonly occurring post-zygotic (somatic) mutation in male individuals. The past decade of research suggests that LOY has important effects in shaping the activity of the immune system, and multiple studies have shown the effects of LOY on a range of diseases, including cancer, neurodegeneration, cardiovascular disease and acute infection. Epidemiological findings have been corroborated by functional analyses providing insights into the mechanisms by which LOY modulates the immune system; in particular, a causal role for LOY in cardiac fibrosis, bladder cancer and Alzheimer disease has been indicated. These insights show that LOY is a highly dynamic mutation (such that LOY clones expand and contract with time) and has pleiotropic, cell-type-specific effects. Here, we review the status of the field and highlight the potential of LOY as a biomarker and target of new therapeutics that aim to counteract its negative effects on the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors contributing to LOY, its underlying mechanisms, potential consequences and associated diseases.
Fig. 2: Proposed interactions between Treg cells and CD8+ T cells with LOY in different cellular compartments.
Fig. 3: Effects of LOY on expression of selected, well-characterized immune-checkpoint genes.

Similar content being viewed by others

References

  1. Jacobs, P. A., Court Brown, W. M. & Doll, R. Distribution of human chromosome counts in relation to age. Nature 191, 1178–1180 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Jacobs, P. A., Brunton, M., Court Brown, W. M., Doll, R. & Goldstein, H. Change of human chromosome count distribution with age: evidence for a sex differences. Nature 197, 1080–1081 (1963).

    Article  CAS  PubMed  Google Scholar 

  3. Pierre, R. V. & Hoagland, H. C. 45,X cell lines in adult men: loss of Y chromosome, a normal aging phenomenon? Mayo Clin. Proc. 46, 52–55 (1971).

    CAS  PubMed  Google Scholar 

  4. Pierre, R. V. & Hoagland, H. C. Age-associated aneuploidy: loss of Y chromosome from human bone marrow cells with aging. Cancer 30, 889–894 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Hook, E. B. & Warburton, D. Turner syndrome revisited: review of new data supports the hypothesis that all viable 45,X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss. Hum. Genet. 133, 417–424 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. [No authors listed]. Loss of the Y chromosome from normal and neoplastic bone marrows. United Kingdom Cancer Cytogenetics Group (UKCCG). Genes Chromosomes Cancer 5, 83–88 (1992).

    Article  Google Scholar 

  7. Wiktor, A. et al. Clinical significance of Y chromosome loss in hematologic disease. Genes Chromosomes Cancer 27, 11–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Wong, A. K. et al. Loss of the Y chromosome: an age-related or clonal phenomenon in acute myelogenous leukemia/myelodysplastic syndrome? Arch. Pathol. Lab. Med. 132, 1329–1332 (2008).

    Article  PubMed  Google Scholar 

  9. Ganster, C. et al. New data shed light on Y-loss-related pathogenesis in myelodysplastic syndromes. Genes Chromosomes Cancer 54, 717–724 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Ouseph, M. M. et al. Genomic alterations in patients with somatic loss of the Y chromosome as the sole cytogenetic finding in bone marrow cells. Haematologica 106, 555–564 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Forsberg, L. A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628 (2014). This study describes, for the first time, the association between LOY in blood with risks of all-cause mortality and non-haematological cancer mortality as well as the dynamic nature of LOY clones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dumanski, J. P. et al. Smoking is associated with mosaic loss of chromosome Y. Science 347, 81–83 (2015). The study shows that cigarette smoking induces LOY in blood and that smoking has a transient and dose-dependent mutagenic effect on LOY status.

    Article  CAS  PubMed  Google Scholar 

  13. Dumanski, J. P. et al. Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. Am. J. Hum. Genet. 98, 1208–1219 (2016). This study shows that male individuals with LOY in more than 30% of leukocytes have increased susceptibility to Alzheimer disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, W. et al. Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nat. Genet. 48, 563–568 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Forsberg, L. et al. Mosaic loss of chromosome Y (LOY) in leukocytes matters. Nat. Genet. 51, 4–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Loftfield, E. et al. Mosaic Y loss is moderately associated with solid tumor risk. Cancer Res. 79, 461–466 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Parker, K., Erzurumluoglu, A. M. & Rodriguez, S. The Y chromosome: a complex locus for genetic analyses of complex human traits. Genes 11, 1273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khan, S. I., Andrews, K. L., Jennings, G. L., Sampson, A. K. & Chin-Dusting, J. P. F. Chromosome, hypertension and cardiovascular disease: is inflammation the answer? Int. J. Mol. Sci. 20, 2892 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krausz, C. & Casamonti, E. Spermatogenic failure and the Y chromosome. Hum. Genet. 136, 637–655 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Colaco, S. & Modi, D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. 16, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fedder, J. et al. Complete or partial loss of the Y chromosome in an unselected cohort of 865 non-vasectomized, azoospermic men. Basic Clin. Androl. 33, 37 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuroki, Y. & Fukami, M. Y chromosome genomic variations and biological significance in human diseases and health. Cytogenet. Genome Res. 163, 5–13 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Kayser, M. Forensic use of Y-chromosome DNA: a general overview. Hum. Genet. 136, 621–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roewer, L. et al. DNA commission of the International Society of Forensic Genetics (ISFG): recommendations on the interpretation of Y-STR results in forensic analysis. Forensic Sci. Int. Genet. 48, 102308 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014). The authors propose that the Y chromosome is crucial not only for sex determination and spermatogenesis but also for male viability and that it contributes to phenotypic differences between the sexes in health and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cortez, D. et al. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488–493 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Furman, B. L. S. et al. Sex chromosome evolution: so many exceptions to the rules. Genome Biol. Evol. 12, 750–763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thompson, D. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019). In this large population study, the authors support the hypothesis that LOY in leukocytes is a biomarker of genomic instability and has functional consequences, in particular for cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loftfield, E. et al. Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. Sci. Rep. 8, 12316 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kimura, A. et al. Loss of chromosome Y in blood, but not in brain, of suicide completers. PLoS One 13, e0190667 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wilson, P. C. et al. Mosaic loss of Y chromosome is associated with aging and epithelial injury in chronic kidney disease. Genome Biol. 25, 36 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song, M. et al. Loss of Y chromosome in leukocytes can be regarded as a male-specific age predictor for age group estimation in forensic genetics. Mol. Genet. Genomics 298, 1073–1085 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Wright, D. J. et al. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nat. Genet. 49, 674–679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho, E. R., Brill, I. K., Gram, I. T., Brown, P. E. & Jha, P. Smoking cessation and short- and longer-term mortality. NEJM Evid. 3, EVIDoa2300272 (2024).

    Article  PubMed  Google Scholar 

  35. Hoang, T. T. et al. Comprehensive evaluation of smoking exposures and their interactions on DNA methylation. EBioMedicine 100, 104956 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pappalardo, X. G. & Barra, V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 14, 25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luzhna, L., Kathiria, P. & Kovalchuk, O. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front. Genet. 4, 131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Müller, P. et al. Why loss of Y? A pan-cancer genome analysis of tumors with loss of Y chromosome. Comput. Struct. Biotechnol. J. 21, 1573–1583 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Demanelis, K. et al. Somatic loss of the Y chromosome is associated with arsenic exposure among Bangladeshi men. Int. J. Epidemiol. 52, 1035–1046 (2023).

    Article  PubMed  Google Scholar 

  40. Chang, V. C. et al. Glyphosate use and mosaic loss of chromosome Y among male farmers in the agricultural health study. Env. Health Perspect. 131, 127006 (2023).

    Article  CAS  Google Scholar 

  41. Wong, J. Y. Y. et al. Outdoor air pollution and mosaic loss of chromosome Y in older men from the Cardiovascular Health Study. Env. Int. 116, 239–247 (2018).

    Article  CAS  Google Scholar 

  42. Liu, Y. et al. Polycyclic aromatic hydrocarbons exposure and their joint effects with age, smoking, and TCL1A variants on mosaic loss of chromosome Y among coke-oven workers. Env. Pollut. 258, 113655 (2020).

    Article  CAS  Google Scholar 

  43. Agostini, L. P. et al. Effects of glyphosate exposure on human health: insights from epidemiological and in vitro studies. Sci. Total. Env. 705, 135808 (2020).

    Article  CAS  Google Scholar 

  44. Dumanski, J. et al. Immune cells lacking Y chromosome show dysregulation of autosomal gene expression. Cell Mol. Life Sci. 78, 4019–4033 (2021). A LOY-associated transcriptional effect was found for approximately 500 autosomal genes that are dysregulated in leukocytes with LOY, with a large fraction of LOY-associated transcriptional effect genes being specific for particular types of leukocyte, indicating pleiotropic effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bruhn-Olszewska, B. et al. Loss of Y in leukocytes as a risk factor for critical COVID-19 in men. Genome Med. 14, 139 (2022). This paper highlights LOY as a major clonal mutation in myeloid cells during emergency myelopoiesis, suggests that LOY levels correlate with COVID-19 severity by affecting monocyte and neutrophil functions, and shows that LOY clones turn over rapidly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guyton, K. Z. et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 16, 490–491 (2015).

    Article  PubMed  Google Scholar 

  47. Ozturk, M. et al. Arsenic and human health: genotoxicity, epigenomic effects, and cancer signaling. Biol. Trace Elem. Res. 200, 988–1001 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Terao, C. et al. GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell differentiation. Nat. Commun. 10, 4719 (2019). In a cohort of nearly 100,000 Japanese male individuals, the authors identified 50 independent genetic markers in 46 loci associated with LOY that overlapped with genes related to haematopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dawoud, A. A. Z., Tapper, W. J. & Cross, N. C. P. Age-related loss of chromosome Y is associated with levels of sex hormone binding globulin and clonal hematopoiesis defined by TET2, TP53, and CBL mutations. Sci. Adv. 9, eade9746 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Joshi, K., Zhang, L., Breslin, S. J. P., Kini, A. R. & Zhang, J. Role of TET dioxygenases in the regulation of both normal and pathological hematopoiesis. J. Exp. Clin. Cancer Res. 41, 294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cong, B., Zhang, Q. & Cao, X. The function and regulation of TET2 in innate immunity and inflammation. Protein Cell 12, 165–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Xu-Monette, Z. Y. et al. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood 119, 3668–3683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lutz-Nicoladoni, C., Wolf, D. & Sopper, S. Modulation of immune cell functions by the E3 ligase Cbl-b. Front. Oncol. 5, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Singh, T. P., Vieyra-Garcia, P. A., Wagner, K., Penninger, J. & Wolf, P. Cbl-b deficiency provides protection against UVB-induced skin damage by modulating inflammatory gene signature. Cell Death Dis. 9, 835 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Riaz, M. et al. A polygenic risk score predicts mosaic loss of chromosome Y in circulating blood cells. Cell Biosci. 11, 205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Forsberg, L. A., Gisselsson, D. & Dumanski, J. P. Mosaicism in health and disease — clones picking up speed. Nat. Rev. Genet. 18, 128–142 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Hallast, P. et al. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature 621, 355–364 (2023). This study provides de novo assemblies of 43 Y chromosomes, showing extensive structural diversity, high inversion rates and revised boundaries, as well as offering new insights into human genome evolution and trait associations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haitjema, S. et al. Loss of Y chromosome in blood is associated with major cardiovascular events during follow-up in men after carotid endarterectomy. Circ. Cardiovasc. Genet. 10, e001544 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Vermeulen, M. C., Pearse, R., Young-Pearse, T. & Mostafavi, S. Mosaic loss of chromosome Y in aged human microglia. Genome Res. 32, 1795–1807 (2022). Based on the large-scale analysis of single-cell and single-nuclei RNA datasets from five neural cell types, the authors found that LOY was markedly enriched in microglia, in particular from individuals with Alzheimer disease, and that there are approximately 180 genes associated with LOY in microglia.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stańkowska, W. et al. Tumor predisposing post-zygotic chromosomal alterations in bladder cancer—insights from histologically normal urothelium. Cancers 16, 961 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Guo, X. et al. Mosaic loss of human Y chromosome: what, how and why. Hum. Genet. 139, 421–446 (2020).

    Article  PubMed  Google Scholar 

  63. Nath, J., Tucker, J. D. & Hando, J. C. Y chromosome aneuploidy, micronuclei, kinetochores and aging in men. Chromosoma 103, 725–731 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Barra, V. & Fachinetti, D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9, 4340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miga, K. H. & Alexandrov, I. A. Variation and evolution of human centromeres: a field guide and perspective. Annu. Rev. Genet. 55, 583–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin, Y. F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thierry, A. R., Sanchez, C., Colinge, J. & Pisareva, E. Circulating DNA reveals a specific and higher fragmentation of the Y chromosome. Hum. Genet. 142, 1603–1609 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Jakubek, Y. A. et al. Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood. Preprint at medRxiv https://doi.org/10.1101/2024.04.16.24305851 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jąkalski, M. et al. DNA methylation patterns contribute to changes of cellular differentiation pathways in leukocytes with LOY from patients with Alzheimer’s disease. Preprint at medRxiv https://doi.org/10.1101/2024.08.19.24312211 (2024).

    Article  Google Scholar 

  70. Danielsson, M. et al. Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals. Eur. J. Hum. Genet. 28, 349–357 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Tang, D. et al. Y chromosome loss is associated with age-related male patients with abdominal aortic aneurysms. Clin. Interv. Aging 14, 1227–1241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hubbard, A. K. et al. Serum biomarkers are altered in UK Biobank participants with mosaic chromosomal alterations. Hum. Mol. Genet. 32, 3146–3152 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chunduri, N. K., Barthel, K. & Storchova, Z. Consequences of chromosome loss: why do cells need each chromosome twice? Cells 11, 1530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abdel-Hafiz, H. A. et al. Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 619, 624–631 (2023). This study shows that T cells with LOY have altered function by promoting T cell exhaustion and sensitizing them to PD1-targeted immunotherapy, using a mouse bladder cancer model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Komura, K. et al. ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. J. Clin. Invest. 128, 2979–2995 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gozdecka, M. et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50, 883–894 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahn, J. et al. Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget 7, 63252–63260 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Celli, L., Gasparini, P., Biino, G., Zannini, L. & Cardano, M. CRISPR/Cas9 mediated Y-chromosome elimination affects human cells transcriptome. Cell Biosci. 14, 15 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paaby, A. B. & Rockman, M. V. The many faces of pleiotropy. Trends Genet. 29, 66–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Mackay, T. F. C. & Anholt, R. R. H. Pleiotropy, epistasis and the genetic architecture of quantitative traits. Nat. Rev. Genet. 25, 639–657 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022). Using a mouse model with bone marrow cells lacking the Y chromosome, the authors showed increased mortality and age-related profibrotic pathologies, including reduced cardiac function, which together with prospective clinical studies in humans suggest that haematopoietic LOY causally contributes to fibrosis, cardiac dysfunction and mortality in male individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wójcik, M. et al. Loss of Y in regulatory T lymphocytes in the tumor micro-environment of primary colorectal cancers and liver metastases. Sci. Rep. 14, 9458 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mattisson, J. et al. Loss of chromosome Y in regulatory T cells. BMC Genomics 25, 243 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 1913–1926 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cook, M. B., McGlynn, K. A., Devesa, S. S., Freedman, N. D. & Anderson, W. F. Sex disparities in cancer mortality and survival. Cancer Epidemiol. Biomark. Prev. 20, 1629–1637 (2011).

    Article  Google Scholar 

  87. Edgren, G., Liang, L., Adami, H. O. & Chang, E. T. Enigmatic sex disparities in cancer incidence. Eur. J. Epidemiol. 27, 187–196 (2012).

    Article  PubMed  Google Scholar 

  88. Massey, S. C. et al. Sex differences in health and disease: a review of biological sex differences relevant to cancer with a spotlight on glioma. Cancer Lett. 498, 178–187 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Noveski, P. et al. Loss of Y chromosome in peripheral blood of colorectal and prostate cancer patients. PLoS One 11, e0146264 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kobayashi, T., Hachiya, T., Ikehata, Y. & Horie, S. Genetic association of mosaic loss of chromosome Y with prostate cancer in men of European and East Asian ancestries: a Mendelian randomization study. Front. Aging 4, 1176451 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019). This study shows that clonal haematopoiesis is common in ageing individuals, and is associated with an increased risk of haematological cancers and other age-related diseases, providing insights into the mechanisms linking somatic mutations to human health and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Niroula, A. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat. Med. 27, 1921–1927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ljungstrom, V. et al. Loss of Y and clonal hematopoiesis in blood-two sides of the same coin? Leukemia 36, 889–891 (2022).

    Article  PubMed  Google Scholar 

  95. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brown, D. W. et al. Shared and distinct genetic etiologies for different types of clonal hematopoiesis. Nat. Commun. 14, 5536 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kamphuis, P. et al. Clonal hematopoiesis defined by somatic mutations infrequently co-occurs with mosaic loss of the Y chromosome in a population-based cohort. Hemasphere 7, e956 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mas-Peiro, S. et al. Mosaic loss of Y chromosome in monocytes is associated with lower survival after transcatheter aortic valve replacement. Eur. Heart J. 44, 1943–1952 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arseneault, M. et al. Loss of chromosome Y leads to down regulation of KDM5D and KDM6C epigenetic modifiers in clear cell renal cell carcinoma. Sci. Rep. 7, 44876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Büscheck, F. et al. Y-chromosome loss is frequent in male renal tumors. Ann. Transl. Med. 9, 209 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Qi, M., Pang, J., Mitsiades, I., Lane, A. A. & Rheinbay, E. Loss of chromosome Y in primary tumors. Cell https://doi.org/10.1016/j.cell.2023.06.006 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Łysiak, M. et al. Deletions on chromosome Y and downregulation of the SRY gene in tumor tissue are associated with worse survival of glioblastoma patients. Cancers 13, 1619 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wong, H. Y. et al. TMSB4Y is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer. Oncotarget 6, 44927–44940 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Agahozo, M. C. et al. Loss of Y-chromosome during male breast carcinogenesis. Cancers 12, 631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hollows, R. et al. Association between loss of Y chromosome and poor prognosis in male head and neck squamous cell carcinoma. Head Neck 41, 993–1006 (2019).

    Article  PubMed  Google Scholar 

  107. Loeser, H. et al. Y chromosome loss is a frequent event in Barrett’s adenocarcinoma and associated with poor outcome. Cancers 12, 1743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Caceres, A., Jene, A., Esko, T., Perez-Jurado, L. A. & Gonzalez, J. R. Extreme down-regulation of chromosome Y and cancer risk in men. J. Natl Cancer Inst. 112, 913–920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Willis-Owen, S. A. G. et al. Y disruption, autosomal hypomethylation and poor male lung cancer survival. Sci. Rep. 11, 12453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ran, Y. et al. Y-linked lysine(K) demethylase 5D as a regulator of sex-specific bladder cancer metastasis and prognosis. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3334659/v1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Li, N. et al. JARID1D is a suppressor and prognostic marker of prostate cancer invasion and metastasis. Cancer Res. 76, 831–843 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Raters, V. M. et al. Combined score of Y chromosome loss and T-cell infiltration improves UICC based stratification of esophageal adenocarcinoma. Front. Oncol. 13, 1249172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Horitani, K. et al. Disruption of the Uty epigenetic regulator locus in hematopoietic cells phenocopies the profibrotic attributes of Y chromosome loss in heart failure. Nat. Cardiovasc. Res. 3, 343–355 (2024). This study reports that macrophages with LOY in patients with dilated cardiomyopathy had gene expression changes associated with cardiac fibroblast activation, and disruption of the Y chromosome-encoded Uty gene in leukocytes accelerated heart failure in male mice.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cremer, S. et al. Prognostic significance of somatic mutations in myeloid cells of men with chronic heart failure — interaction between loss of Y chromosome and clonal hematopoiesis. Preprint at medRxiv https://doi.org/10.1101/2024.07.30.24310319 (2024).

    Article  Google Scholar 

  116. Weyrich, M. et al. Loss of Y chromosome and cardiovascular events in chronic kidney disease. Circulation 150, 746–757 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Araga, S., Kagimoto, H., Funamoto, K. & Takahashi, K. Reduced natural killer cell activity in patients with dementia of the Alzheimer type. Acta Neurol. Scand. 84, 259–263 (1991).

    Article  CAS  PubMed  Google Scholar 

  118. Solerte, S. B., Cravello, L., Ferrari, E. & Fioravanti, M. Overproduction of IFN-γ and TNF-α from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 917, 331–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Schindowski, K. et al. Apoptosis of CD4+ T and natural killer cells in Alzheimer’s disease. Pharmacopsychiatry 39, 220–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Korin, B. et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci. 20, 1300–1309 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Le Page, A. et al. Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp. Gerontol. 107, 59–66 (2018).

    Article  PubMed  Google Scholar 

  122. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Solana, C., Tarazona, R. & Solana, R. Immunosenescence of natural killer cells, inflammation, and Alzheimer’s disease. Int. J. Alzheimers Dis. 2018, 3128758 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. Mendivil-Perez, M., Velez-Pardo, C., Kosik, K. S., Lopera, F. & Jimenez-Del-Rio, M. iPSCs-derived nerve-like cells from familial Alzheimer’s disease PSEN 1 E280A reveal increased amyloid-beta levels and loss of the Y chromosome. Neurosci. Lett. 703, 111–118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Caceres, A., Jenec, A., Esko, T., Perez-Jurado, L. & Gonzalez, J. Extreme down-regulation of chromosome Y and Alzheimer’s disease in men. Neurobiol. Aging 90, 150 e151–150.e4 (2020).

    Article  Google Scholar 

  126. García-González, P. et al. Mendelian randomization confirms the role of Y-chromosome loss in Alzheimer’s disease etiopathogenesis in males. Int. J. Mol. Sci. 24, 898 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Palmer, E. et al. Somatic loss of the Y chromosome and Alzheimer’s disease risk. Preprint at bioRxiv https://doi.org/10.1101/2022.11.14.516433 (2022).

    Article  Google Scholar 

  128. Graham, E. J. et al. Somatic mosaicism of sex chromosomes in the blood and brain. Brain Res. 1721, 146345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, Q. et al. Neuroinflammation in Alzheimer’s disease: insights from peripheral immune cells. Immun. Ageing 21, 38 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, Y. et al. Depletion of NK cells improves cognitive function in the Alzheimer disease mouse model. J. Immunol. 205, 502–510 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Scully, E. P., Haverfield, J., Ursin, R. L., Tannenbaum, C. & Klein, S. L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 20, 442–447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zekavat, S. M. et al. Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat. Med. 27, 1012–1024 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mattisson, J. et al. Leukocytes with chromosome Y loss have reduced abundance of the cell surface immunoprotein CD99. Sci. Rep. 11, 15160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pérez-Jurado, L. A. et al. Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2. Commun. Biol. 7, 202 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tillett, W. S. & Francis, T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J. Exp. Med. 52, 561–571 (1930).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ablij, H. & Meinders, A. C-reactive protein: history and revival. Eur. J. Intern. Med. 13, 412 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Ridker, P. M. C-reactive protein: eighty years from discovery to emergence as a major risk marker for cardiovascular disease. Clin. Chem. 55, 209–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Djos, A. et al. Loss of chromosome Y in neuroblastoma is associated with high-risk disease, 11q-deletion, and telomere maintenance. Genes Chromosomes Cancer 63, e23260 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Blatt Kalben, B. Why men die younger. North Am. Actuarial J. 4, 83–111 (2000).

    Article  Google Scholar 

  140. Austad, S. N. Why women live longer than men: sex differences in longevity. Gend. Med. 3, 79–92 (2006).

    Article  PubMed  Google Scholar 

  141. Glei, D. A. & Horiuchi, S. The narrowing sex differential in life expectancy in high-income populations: effects of differences in the age pattern of mortality. Popul. Stud. 61, 141–159 (2007).

    Article  Google Scholar 

  142. Zarulli, V. et al. Women live longer than men even during severe famines and epidemics. Proc. Natl Acad. Sci. USA 115, E832–E840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wikipedia contributors. Life expectancy. Wikipedia https://en.wikipedia.org/w/index.php?title=Life_expectancy (accessed 13 December 2024).

  144. Dattani, S. & Rodés-Guirao, L. Why do women live longer than men? Our World in Data https://ourworldindata.org/why-do-women-live-longer-than-men (2023).

  145. World Health Organization. Life expectancy at birth (years). WHO Data https://data.who.int/indicators/i/A21CFC2/90E2E48 (2024).

  146. Ali, R. H. et al. Gender-associated genomic differences in colorectal cancer: clinical insight from feminization of male cancer cells. Int. J. Mol. Sci. 15, 17344–17365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhao, Y. et al. GIGYF1 loss of function is associated with clonal mosaicism and adverse metabolic health. Nat. Commun. 12, 4178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Persani, L. et al. Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J. Autoimmun. 38, J193–J196 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Lleo, A. et al. Y chromosome loss in male patients with primary biliary cirrhosis. J. Autoimmun. 41, 87–91 (2013).

    Article  PubMed  Google Scholar 

  150. Grassmann, F. et al. Y chromosome mosaicism is associated with age-related macular degeneration. Eur. J. Hum. Genet. 27, 36–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Grassmann, F., Weber, B. H. F. & Veitia, R. A. Insights into the loss of the Y chromosome with age in control individuals and in patients with age-related macular degeneration using genotyping microarray data. Hum. Genet. 139, 401–407 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Duan, Q. et al. Mosaic loss of chromosome Y in peripheral blood cells is associated with age-related macular degeneration in men. Cell Biosci. 12, 73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hirata, T. et al. Investigation of chromosome Y loss in men with schizophrenia. Neuropsychiatr. Dis. Treat. 14, 2115–2122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jiang, L. et al. Characterization of loss of chromosome Y in peripheral blood cells in male Han Chinese patients with schizophrenia. BMC Psychiatry 23, 469 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dorvall, M. et al. Mosaic loss of chromosome Y is associated with functional outcome after ischemic stroke. Stroke 54, 2434–2437 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rhie, A. et al. The complete sequence of a human Y chromosome. Nature 621, 344–354 (2023). The Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome, correcting multiple errors and gaps in the Y chromosome sequence of Genome Reference Consortium Human Build 38 (GRCh38-Y).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Westemeier-Rice, E. S., Winters, M. T., Rawson, T. W. & Martinez, I. More than the SRY: the non-coding landscape of the y chromosome and its importance in human disease. Noncoding RNA 10, 21 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Genovese, G. et al. BCFtools/liftover: an accurate and comprehensive tool to convert genetic variants across genome assemblies. Bioinformatics 40, btae038 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Watson, C. J. & Blundell, J. R. Mutation rates and fitness consequences of mosaic chromosomal alterations in blood. Nat. Genet. 55, 1677–1685 (2023). This paper estimates that most mosaic chromosomal alterations have moderate-to-high fitness effects but low mutation rates, except for the much higher rates of LOY and loss of X chromosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Machiela, M. J. et al. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat. Commun. 7, 11843 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jäger, N. et al. Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell 155, 567–581 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lippert, C. et al. Identification of individuals by trait prediction using whole-genome sequencing data. Proc. Natl Acad. Sci. USA 114, 10166–10171 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Loh, P. R. et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559, 350–355 (2018). This study identifies six loci where germline variants strongly influenced the acquisition of deletions or loss of heterozygosity, and found that specific mosaic chromosomal aberrations were strongly associated with future haematological malignancies in a cohort of more than 15,000 donors with more than 8,000 chromosomal alterations in blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu, A. et al. Genetic drivers and cellular selection of female mosaic X chromosome loss. Nature 631, 134–141 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Zhou, W. et al. Detectable chromosome X mosaicism in males is rarely tolerated in peripheral leukocytes. Sci. Rep. 11, 1193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Levin, M. G. et al. Genetics of smoking and risk of clonal hematopoiesis. Sci. Rep. 12, 7248 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Orta, A. H. et al. Rats exhibit age-related mosaic loss of chromosome Y. Commun. Biol. 4, 1418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mochizuki, H., Estrada, A. J. & Boggess, M. Assessment of Y chromosome copy number alterations in non-neoplastic and neoplastic leukocytes of male dogs. Vet. J. 304, 106088 (2024).

    Article  CAS  PubMed  Google Scholar 

  170. Lemaître, J. F. et al. Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc. Natl Acad. Sci. USA 117, 8546–8553 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Trujillo, N. et al. Lack of age-related mosaic loss of W chromosome in long-lived birds. Biol. Lett. 18, 20210553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Xirocostas, Z. A., Everingham, S. E. & Moles, A. T. The sex with the reduced sex chromosome dies earlier: a comparison across the tree of life. Biol. Lett. 16, 20190867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Channappanavar, R. et al. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 198, 4046–4053 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016). This review article highlights well-documented biological differences between the immune systems of female and male individuals.

    Article  CAS  PubMed  Google Scholar 

  175. Dunn, S. E., Perry, W. A. & Klein, S. L. Mechanisms and consequences of sex differences in immune responses. Nat. Rev. Nephrol. 20, 37–55 (2024).

    Article  CAS  PubMed  Google Scholar 

  176. Zhang, Q. et al. Mosaic loss of chromosome Y promotes leukemogenesis and clonal hematopoiesis. JCI Insight 7, e153768 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Hirata, W., Tomoda, T., Yuri, S. & Isotani, A. Generation of the Y-chromosome linked red fluorescent protein transgenic mouse model and sexing at the preimplantation stage. Exp. Anim. 71, 82–89 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Abdel-Hafiz, H. A. et al. Single-cell profiling of murine bladder cancer identifies sex-specific transcriptional signatures with prognostic relevance. iScience 26, 107703 (2023). Single-cell RNA sequencing of nitrosamine-induced bladder cancer in mice revealed marked sex-specific transcriptional differences and novel gene expression signatures, emphasizing the importance of biological sex as a key factor in cancer research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Brownmiller, T. et al. Y chromosome lncRNA are involved in radiation response of male non-small cell lung cancer cells. Cancer Res. 80, 4046–4057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Riva, M. Essand, P. Kowalczyk and E. T. Janson for critical review of the manuscript. This work was sponsored, in part, by grants from the Swedish Research Council, the Swedish Cancer Society, and the National Science Center, Poland (Opus grant award no. 2023/49/B/NZ2/03680) to J.P.D.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jan P. Dumanski.

Ethics declarations

Competing interests

J.P.D. is a cofounder and shareholder in Cray Innovation AB. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Alexander Bick, who co-reviewed with Robert Corty; Maki Fukami, who co-reviewed with Atsushi Hattori; Esther Rheinbay; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Aneuploidy

The condition of a cell having an abnormal number of chromosomes owing to loss or duplication.

Clonal haematopoiesis

Describes the asymptomatic clonal expansion of blood cells descended from a single haematopoietic stem cell or haematopoietic progenitor cell.

Clonal haematopoiesis of indeterminate potential

(CHIP). The presence of a clonally expanded haematopoietic stem cell population caused by leukaemogenic mutations in individuals without evidence of haematological malignancy, dysplasia or cytopenia.

Emergency myelopoiesis

An essential component of the response to infection, characterized by inflammation-induced increased haematopoiesis skewed towards the myeloid lineage, that leads to increased myeloid cell production in the bone marrow and the rapid release of neutrophils into the circulation.

Low-density neutrophils

(LDNs). Also known as myeloid-derived suppressor cells of polymorphonuclear type. A subpopulation of neutrophils that co-segregate with peripheral blood mononuclear cells after density gradient centrifugation rather than with the normal-density neutrophils. They are thought to have an immunosuppressive phenotype.

Male-specific region of the Y chromosome

A large part of the Y chromosome that does not recombine with the X chromosome during meiosis.

Micronuclei

Small, extranuclear bodies formed by chromosomal fragments or whole chromosomes that are not incorporated into the daughter nuclei during cell division.

Mosaic chromosomal alterations

Genetic changes, including gains, losses or copy-neutral loss of heterozygosity, that occur in a subset of cells within the same individual.

Pseudoautosomal genes

Genes located on the two pseudoautosomal regions of the X and Y chromosomes that are inherited in an autosomal-like manner, enabling recombination between the sex chromosomes.

T cell exhaustion

A state of T cell dysfunction that arises from chronic antigen stimulation, typically during persistent infections or in the context of tumours, characterized by impaired effector functions and sustained expression of inhibitory, immune-checkpoint receptors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruhn-Olszewska, B., Markljung, E., Rychlicka-Buniowska, E. et al. The effects of loss of Y chromosome on male health. Nat Rev Genet (2025). https://doi.org/10.1038/s41576-024-00805-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00805-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer