Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological and clinical significance of tumour-infiltrating lymphocytes in the era of immunotherapy: a multidimensional approach

Abstract

Immune-checkpoint inhibitors (ICIs) have improved clinical outcomes across several solid tumour types. Prominent efforts have focused on understanding the anticancer mechanisms of these agents, identifying biomarkers of response and uncovering resistance mechanisms to develop new immunotherapeutic approaches. This research has underscored the crucial roles of the tumour microenvironment and, particularly, tumour-infiltrating lymphocytes (TILs) in immune-mediated tumour elimination. Numerous studies have evaluated the prognostic and predictive value of TILs and the mechanisms that govern T cell dysfunction, fuelled by technical developments in single-cell transcriptomics, proteomics, high-dimensional spatial platforms and advanced computational models. However, questions remain regarding the definition of TILs, optimal strategies to study them, specific roles of different TIL subpopulations and their clinical implications in different treatment contexts. Additionally, most studies have focused on the abundance of major TIL subpopulations but have not developed standardized quantification strategies or analysed other crucial aspects such as their functional profile, spatial distribution and/or arrangement, tumour antigen-reactivity, clonal diversity and heterogeneity. In this Review, we discuss a conceptual framework for the systematic study of TILs and summarize the evidence regarding their biological properties and biomarker potential for ICI therapy. We also highlight opportunities, challenges and strategies to support future developments in this field.

Key points

  • A clear and widely accepted definition of tumour-infiltrating lymphocytes (TILs) has not yet been established and TILs are not systematically used as biomarkers in current oncology practice.

  • TILs comprise a spectrum of numerous lymphocyte subsets with dissimilar abundance, functional states, marker profiles, antigen specificity, clonal expansion, spatial distribution and dynamics; resolving the relative contribution of different TIL features and/or integration of these diverse parameters is key to exploiting their clinical value.

  • Cytotoxic T cells mediate tumour elimination induced by immune-checkpoint inhibitors (ICIs), the role of other T cell subsets and B cells in the recognition and eradication of malignant cells is less clear.

  • The abundance of intratumoural T cells and/or B cells (typically forming tertiary lymphoid structures) is positively associated with prognosis across most solid tumour types and might be predictive of sensitivity to ICIs and other immunotherapies.

  • The functional (or dysfunctional) profile of TILs determines their capacity to eliminate cancer cells and has prominent biomarker potential. Spatial features of TILs such as their location within the tumour microenvironment, distribution and/or clustering, infiltration patterns and topographical heterogeneity can also affect their biological responses, association with immunotherapy outcomes and might inform therapeutic avenues.

  • The application of modern technologies such as multiparametric single-cell molecular analysis, spatially resolved immunoprofiling tools and deep learning or other artificial intelligence platforms is redefining our understanding of the composition and analysis of TILs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological properties of TILs and their role in immunotherapy.
Fig. 2: TILs, TLS and spatial compartments in cancer.
Fig. 3: Associations of TILs with ICI treatment outcomes in patients with solid tumours.
Fig. 4: Spatial heterogeneity of TIL infiltration patterns.

Similar content being viewed by others

References

  1. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    CAS  PubMed  Google Scholar 

  2. Clemente, C. G. et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77, 1303–1310 (1996).

    CAS  PubMed  Google Scholar 

  3. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  4. Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008).

    CAS  PubMed  Google Scholar 

  5. Elder, D. E., Massi, D., Scolyer, R. A. & Willemze, R. (eds) WHO Classification of Skin Tumours 4th edn, Vol. 11 (WHO, 2018).

  6. WHO Classification of Tumours Editorial Board. Digestive System Tumours 5th edn, Vol. 1 (WHO, 2019).

  7. Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).

    CAS  PubMed  Google Scholar 

  8. Salgado, R. & AbdulJabbar, K. Artificial intelligence biomarkers for digital oncology: a case study of tumor-infiltrating lymphocytes in melanoma. EBioMedicine 96, 104796 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    CAS  PubMed  Google Scholar 

  10. Petitprez, F., Meylan, M., de Reynies, A., Sautes-Fridman, C. & Fridman, W. H. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front. Immunol. 11, 784 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    CAS  PubMed  Google Scholar 

  12. Paijens, S. T., Vledder, A., de Bruyn, M. & Nijman, H. W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol. Immunol. 18, 842–859 (2021).

    CAS  PubMed  Google Scholar 

  13. Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Klein, S. et al. Tumor infiltrating lymphocyte clusters are associated with response to immune checkpoint inhibition in BRAF V600E/K mutated malignant melanomas. Sci. Rep. 11, 1834 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong, P. F. et al. Multiplex quantitative analysis of tumor-infiltrating lymphocytes and immunotherapy outcome in metastatic melanoma. Clin. Cancer Res. 25, 2442–2449 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    CAS  PubMed  Google Scholar 

  17. Keung, E. Z. et al. Correlative analyses of the SARC028 trial reveal an association between sarcoma-associated immune infiltrate and response to pembrolizumab. Clin. Cancer Res. 26, 1258–1266 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1 CD8+ tumor-infiltrating T cells. Immunity 50, 181–194 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopez de Rodas, M. et al. Role of tumor infiltrating lymphocytes and spatial immune heterogeneity in sensitivity to PD-1 axis blockers in non-small cell lung cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-004440 (2022).

  21. Hendry, S. et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immunooncology Biomarkers Working Group: part 1: assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv. Anat. Pathol. 24, 235–251 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Corredor, G. et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin. Cancer Res. 25, 1526–1534 (2019).

    CAS  PubMed  Google Scholar 

  24. Saltz, J. et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 23, 181–193 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Harder, N. et al. Automatic discovery of image-based signatures for ipilimumab response prediction in malignant melanoma. Sci. Rep. 9, 7449 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    CAS  PubMed  Google Scholar 

  29. Leko, V. & Rosenberg, S. A. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohaan, M. W., Wilgenhof, S. & Haanen, J. Adoptive cellular therapies: the current landscape. Virchows Arch. 474, 449–461 (2019).

    PubMed  Google Scholar 

  31. Milone, M. C. et al. Engineering enhanced CAR T-cells for improved cancer therapy. Nat. Cancer 2, 780–793 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Provencio, M. et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 1413–1422 (2020).

    CAS  PubMed  Google Scholar 

  33. Emens, L. A. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 Study. J. Natl Cancer Inst. 113, 1005–1016 (2021).

    PubMed  PubMed Central  Google Scholar 

  34. Brummel, K., Eerkens, A. L., de Bruyn, M. & Nijman, H. W. Tumour-infiltrating lymphocytes: from prognosis to treatment selection. Br. J. Cancer 128, 451–458 (2023).

    CAS  PubMed  Google Scholar 

  35. Hegi-Johnson, F. et al. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis. Oncol. 6, 24 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sabdyusheva Litschauer, I. et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy. Sci. Rep. 10, 17619 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Uhlen, P. & Tanaka, N. Improved pathological examination of tumors with 3D light-sheet microscopy. Trends Cancer 4, 337–341 (2018).

    PubMed  Google Scholar 

  38. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    CAS  PubMed  Google Scholar 

  39. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789 (2019).

    CAS  PubMed  Google Scholar 

  41. Lee, Y. J. et al. CD39+ tissue-resident memory CD8+ T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. Sci. Immunol. 7, eabn8390 (2022).

    CAS  PubMed  Google Scholar 

  42. Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018).

    CAS  PubMed  Google Scholar 

  43. Beyrend, G. et al. PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors. J. Immunother. Cancer 7, 217 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Lu, S. et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 5, 1195–1204 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Hudson, W. H. & Sudmeier, L. J. Localization of T cell clonotypes using the Visium spatial transcriptomics platform. Star. Protoc. 3, 101391 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, S. et al. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. Immunity 55, 1940–1952 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao, J. et al. Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nat. Med. 26, 1845–1851 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Loupakis, F. et al. Prediction of benefit from checkpoint inhibitors in mismatch repair deficient metastatic colorectal cancer: role of tumor infiltrating lymphocytes. Oncologist 25, 481–487 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mastracci, L. et al. Response to ipilimumab therapy in metastatic melanoma patients: potential relevance of CTLA-4+ tumor infiltrating lymphocytes and their in situ localization. Cancer Immunol. Immunother. 69, 653–662 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Datar, I. et al. Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis. Clin. Cancer Res. 25, 4663–4673 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gettinger, S. N. et al. A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat. Commun. 9, 3196 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanmamed, M. F. et al. A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy. Cancer Discov. 11, 1700–1715 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schad, S. E. et al. Tumor-induced double positive T cells display distinct lineage commitment mechanisms and functions. J. Exp. Med. https://doi.org/10.1084/jem.20212169 (2022).

  55. Chaput, N. et al. Identification of CD8+ CD25+ Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58, 520–529 (2009).

    CAS  PubMed  Google Scholar 

  56. Ruf, B. et al. Activating mucosal-associated invariant T cells induces a broad antitumor response. Cancer Immunol. Res. 9, 1024–1034 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mauri, C. & Menon, M. The expanding family of regulatory B cells. Int. Immunol. 27, 479–486 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Monette, A. et al. Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee. J. Immunother. Cancer https://doi.org/10.1136/jitc-2024-009427 (2024).

  59. Vikas, P. et al. Mismatch repair and microsatellite instability testing for immune checkpoint inhibitor therapy: ASCO endorsement of College of American Pathologists guideline. J. Clin. Oncol. 41, 1943–1948 (2023).

    CAS  PubMed  Google Scholar 

  60. US Food & Drug Administration. Approval package for ipilimumab. FDA https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/125377Orig1s000Approv.pdf (2011).

  61. US Food & Drug Administration. Clinical pharmacology and biopharmaceutics review for pembrolizumab. FDA https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125514Orig1s000ClinPharmR.pdf?form=MG0AV3 (2014).

  62. Sharma, P. et al. Immune checkpoint therapy-current perspectives and future directions. Cell 186, 1652–1669 (2023).

    CAS  PubMed  Google Scholar 

  63. US Food & Drug Administration. FDA approves Opdualag for unresectable or metastatic melanoma. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma?form=MG0AV3 (2022).

  64. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open. 2, e192535 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Lei, Y., Li, X., Huang, Q., Zheng, X. & Liu, M. Progress and challenges of predictive biomarkers for immune checkpoint blockade. Front. Oncol. 11, 617335 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39, 154–173 (2021).

    CAS  PubMed  Google Scholar 

  67. Davis, A. A. & Patel, V. G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 7, 278 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Aguiar, P. N. Jr. et al. The role of PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: a network meta-analysis. Immunotherapy 8, 479–488 (2016).

    CAS  PubMed  Google Scholar 

  69. Mehra, R. et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br. J. Cancer 119, 153–159 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra137 (2012).

    Google Scholar 

  72. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, K., Luo, H., Huang, L., Luo, H. & Zhu, X. Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int. 20, 16 (2020).

    PubMed  PubMed Central  Google Scholar 

  74. Bredel, D. et al. Immune checkpoints are predominantly co-expressed by clonally expanded CD4+ FoxP3+ intratumoral T-cells in primary human cancers. J. Exp. Clin. Cancer Res. 42, 333 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Erdag, G. et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 72, 1070–1080 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gide, T. N. et al. Close proximity of immune and tumor cells underlies response to anti-PD-1 based therapies in metastatic melanoma patients. Oncoimmunology 9, 1659093 (2020).

    PubMed  Google Scholar 

  77. Hamid, O. et al. Safety, clinical activity, and biological correlates of response in patients with metastatic melanoma: results from a phase I trial of atezolizumab. Clin. Cancer Res. 25, 6061–6072 (2019).

    PubMed  Google Scholar 

  78. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Uryvaev, A., Passhak, M., Hershkovits, D., Sabo, E. & Bar-Sela, G. The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med. Oncol. 35, 25 (2018).

    PubMed  Google Scholar 

  80. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    CAS  PubMed  Google Scholar 

  81. van Duin, I. A. J. et al. Baseline tumor-infiltrating lymphocyte patterns and response to immune checkpoint inhibition in metastatic cutaneous melanoma. Eur. J. Cancer 208, 114190 (2024).

    PubMed  Google Scholar 

  82. Balatoni, T. et al. Tumor-infiltrating immune cells as potential biomarkers predicting response to treatment and survival in patients with metastatic melanoma receiving ipilimumab therapy. Cancer Immunol. Immunother. 67, 141–151 (2018).

    CAS  PubMed  Google Scholar 

  83. Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    CAS  PubMed  Google Scholar 

  86. Madonna, G. et al. PD-L1 expression with immune-infiltrate evaluation and outcome prediction in melanoma patients treated with ipilimumab. Oncoimmunology 7, e1405206 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Daud, A. I. et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447–3452 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Homet Moreno, B. et al. Response to programmed cell death-1 blockade in a murine melanoma syngeneic model requires costimulation, CD4, and CD8 T Cells. Cancer Immunol. Res. 4, 845–857 (2016).

    CAS  PubMed  Google Scholar 

  90. Fumet, J. D. et al. Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of patients under anti-PD-1 therapy. Br. J. Cancer 119, 950–960 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hashemi, S. et al. Surprising impact of stromal TIL’s on immunotherapy efficacy in a real-world lung cancer study. Lung Cancer 153, 81–89 (2021).

    CAS  PubMed  Google Scholar 

  92. Niemeijer, A. N. et al. Association of tumour and stroma PD-1, PD-L1, CD3, CD4 and CD8 expression with DCB and OS to nivolumab treatment in NSCLC patients pre-treated with chemotherapy. Br. J. Cancer 123, 392–402 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hurkmans, D. P. et al. Tumor mutational load, CD8+ T cells, expression of PD-L1 and HLA class I to guide immunotherapy decisions in NSCLC patients. Cancer Immunol. Immunother. 69, 771–777 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu-Lieskovan, S. et al. Tumor characteristics associated with benefit from pembrolizumab in advanced non-small cell lung cancer. Clin. Cancer Res. 25, 5061–5068 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaira, K. et al. Prognostic significance of tumor infiltrating lymphocytes on first-line pembrolizumab efficacy in advanced non-small cell lung cancer. Discov. Oncol. 14, 6 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rakaee, M. et al. Association of machine learning-based assessment of tumor-infiltrating lymphocytes on standard histologic images with outcomes of immunotherapy in patients with NSCLC. JAMA Oncol. 9, 51–60 (2023).

    PubMed  Google Scholar 

  97. Althammer, S. et al. Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy. J. Immunother. Cancer 7, 121 (2019).

    PubMed  PubMed Central  Google Scholar 

  98. Schalper, K. A. et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/dju435 (2015).

  99. Velcheti, V. et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab. Invest. 94, 107–116 (2014).

    CAS  PubMed  Google Scholar 

  100. Cascone, T. et al. Neoadjuvant durvalumab alone or combined with novel immuno-oncology agents in resectable lung cancer: the phase II NeoCOAST platform trial. Cancer Discov. 13, 2394–2411 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cascone, T. et al. Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: the phase 2 platform NEOSTAR trial. Nat. Med. 29, 593–604 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Emens, L. A. et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. 5, 74–82 (2019).

    PubMed  Google Scholar 

  103. Voorwerk, L. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat. Med. 25, 920–928 (2019).

    CAS  PubMed  Google Scholar 

  104. Bachelot, T. et al. Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: the randomized phase II SAFIR02-BREAST IMMUNO trial. Nat. Med. 27, 250–255 (2021).

    CAS  PubMed  Google Scholar 

  105. Adams, S. et al. Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up: a phase 1b clinical trial. JAMA Oncol. 5, 334–342 (2019).

    PubMed  Google Scholar 

  106. Dieci, M. V. et al. Neoadjuvant chemotherapy and immunotherapy in luminal B-like breast cancer: results of the phase II GIADA trial. Clin. Cancer Res. 28, 308–317 (2022).

    CAS  PubMed  Google Scholar 

  107. Andre, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    CAS  PubMed  Google Scholar 

  108. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Deng, B. et al. CD8 lymphocytes in tumors and nonsynonymous mutational load correlate with prognosis of bladder cancer patients treated with immune checkpoint inhibitors. Cancer Rep. 1, e1002 (2018).

    Google Scholar 

  111. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, L. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat. Commun. 9, 3503 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Powles, T. et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 25, 1706–1714 (2019).

    CAS  PubMed  Google Scholar 

  114. van Dijk, N. et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat. Med. 26, 1839–1844 (2020).

    PubMed  Google Scholar 

  115. Pignon, J. C. et al. irRECIST for the evaluation of candidate biomarkers of response to nivolumab in metastatic clear cell renal cell carcinoma: analysis of a phase II prospective clinical trial. Clin. Cancer Res. 25, 2174–2184 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ficial, M. et al. Expression of T-cell exhaustion molecules and human endogenous retroviruses as predictive biomarkers for response to nivolumab in metastatic clear cell renal cell carcinoma. Clin. Cancer Res. 27, 1371–1380 (2021).

    CAS  PubMed  Google Scholar 

  117. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat. Med. 26, 1733–1741 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hanna, G. J. et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight https://doi.org/10.1172/jci.insight.98811 (2018).

  120. Hecht, M. et al. Safety and efficacy of single cycle induction treatment with cisplatin/docetaxel/ durvalumab/tremelimumab in locally advanced HNSCC: first results of CheckRad-CD8. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001378 (2020).

  121. Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tong, G. et al. Intratumoral CD8+ T cells as a potential positive predictor of chemoimmunotherapy response in PD-L1-negative advanced gastric cancer patients: a retrospective cohort study. J. Gastrointest. Oncol. 13, 1668–1678 (2022).

    PubMed  PubMed Central  Google Scholar 

  123. Kato, K. et al. Long-term efficacy and predictive correlates of response to nivolumab in Japanese patients with esophageal cancer. Cancer Sci. 111, 1676–1684 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4+ T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 28, 5–17 (2021).

    CAS  PubMed  Google Scholar 

  125. Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. & Heath, W. R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186, 65–70 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Theisen, D. & Murphy, K. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Res 6, 98 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Agarwal, P. et al. Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J. Immunol. 183, 1695–1704 (2009).

    CAS  PubMed  Google Scholar 

  128. Oh, S. et al. IL-15 as a mediator of CD4+ help for CD8+ T cell longevity and avoidance of TRAIL-mediated apoptosis. Proc. Natl Acad. Sci. USA 105, 5201–5206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bedoui, S., Heath, W. R. & Mueller, S. N. CD4+ T-cell help amplifies innate signals for primary CD8+ T-cell immunity. Immunol. Rev. 272, 52–64 (2016).

    CAS  PubMed  Google Scholar 

  130. Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Walker, L. S. & Sansom, D. M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11, 852–863 (2011).

    CAS  PubMed  Google Scholar 

  132. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin. Cancer Res. 25, 1233–1238 (2019).

    CAS  PubMed  Google Scholar 

  136. Italiano, A. et al. Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid structures: a phase 2 PEMBROSARC trial cohort. Nat. Med. 28, 1199–1206 (2022).

    CAS  PubMed  Google Scholar 

  137. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    CAS  PubMed  Google Scholar 

  138. Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022).

    CAS  PubMed  Google Scholar 

  140. Shen, P. & Fillatreau, S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15, 441–451 (2015).

    CAS  PubMed  Google Scholar 

  141. Patil, N. S. et al. Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell 40, 289–300 (2022).

    CAS  PubMed  Google Scholar 

  142. Cottrell, T. R. et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann. Oncol. 29, 1853–1860 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Sun, X. et al. Maturation and abundance of tertiary lymphoid structures are associated with the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2022-005531 (2022).

  144. Hammerl, D. et al. Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion in triple negative breast cancer. Nat. Commun. 12, 5668 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, Z., Meng, X., Tang, X., Zou, W. & He, Y. Intratumoral tertiary lymphoid structures promote patient survival and immunotherapy response in head neck squamous cell carcinoma. Cancer Immunol. Immunother. 72, 1505–1521 (2023).

    CAS  PubMed  Google Scholar 

  146. Manzo, A., Bombardieri, M., Humby, F. & Pitzalis, C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol. Rev. 233, 267–285 (2010).

    CAS  PubMed  Google Scholar 

  147. Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    CAS  PubMed  Google Scholar 

  148. Morissette, M. C. et al. Persistence of pulmonary tertiary lymphoid tissues and anti-nuclear antibodies following cessation of cigarette smoke exposure. Respir. Res. 15, 49 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Mosnier, J. F. et al. The intraportal lymphoid nodule and its environment in chronic active hepatitis C: an immunohistochemical study. Hepatology 17, 366–371 (1993).

    CAS  PubMed  Google Scholar 

  150. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Scott-Browne, J. P. et al. Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. Immunity 45, 1327–1340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

    PubMed  PubMed Central  Google Scholar 

  154. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Eberhardt, C. S. et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nature 597, 279–284 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Han, J. et al. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat. Cancer 2, 300–311 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Spassova, I. et al. Predominance of central memory T cells with high T-cell receptor repertoire diversity is associated with response to PD-1/PD-L1 inhibition in Merkel cell carcinoma. Clin. Cancer Res. 26, 2257–2267 (2020).

    CAS  PubMed  Google Scholar 

  160. Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 8, 16073 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Edwards, J. et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD-1 treatment. Clin. Cancer Res. 24, 3036–3045 (2018).

    CAS  PubMed  Google Scholar 

  162. Clarke, J. et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. J. Exp. Med. 216, 2128–2149 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Corgnac, S. et al. CD103+ CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with Tc17. Cell Rep. Med. 1, 100127 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Yeong, J. et al. Intratumoral CD39+ CD8+ T cells predict response to Programmed Cell Death Protein-1 or Programmed Death Ligand-1 blockade in patients with NSCLC. J. Thorac. Oncol. 16, 1349–1358 (2021).

    CAS  PubMed  Google Scholar 

  165. Gide, T. N. et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell 35, 238–255 (2019).

    CAS  PubMed  Google Scholar 

  166. Siddiqui, I. et al. Intratumoral Tcf1+ PD-1+ CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    CAS  PubMed  Google Scholar 

  167. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 19, 775–790 (2022).

    PubMed  PubMed Central  Google Scholar 

  169. Zebley, C. C., Zehn, D., Gottschalk, S. & Chi, H. T cell dysfunction and therapeutic intervention in cancer. Nat. Immunol. 25, 1344–1354 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Li, Y. et al. Novel T cell exhaustion gene signature to predict prognosis and immunotherapy response in thyroid carcinoma from integrated RNA-sequencing analysis. Sci. Rep. 14, 8375 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat. Immunol. 22, 1008–1019 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Terranova-Barberio, M. et al. Exhausted T cell signature predicts immunotherapy response in ER-positive breast cancer. Nat. Commun. 11, 3584 (2020).

    PubMed  PubMed Central  Google Scholar 

  175. Cillo, A. R. et al. Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8+ T cells to promote antitumor immunity. Cell 187, 4373–4388 (2024).

    CAS  PubMed  Google Scholar 

  176. Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    CAS  PubMed  Google Scholar 

  179. Miggelbrink, A. M. et al. CD4 T-cell exhaustion: does it exist and what are its roles in cancer? Clin. Cancer Res. 27, 5742–5752 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Gajewski, T. F. The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor microenvironment. Semin. Oncol. 42, 663–671 (2015).

    PubMed  PubMed Central  Google Scholar 

  181. Liu, Y. T. & Sun, Z. J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 11, 5365–5386 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    CAS  PubMed  Google Scholar 

  183. Gajewski, T. F. et al. Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv. Exp. Med. Biol. 1036, 19–31 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Clifton, G. T. et al. Developing a definition of immune exclusion in cancer: results of a modified Delphi workshop. J. Immunother. Cancer https://doi.org/10.1136/jitc-2023-006773 (2023).

  185. Lopez de Rodas, M. et al. Objective analysis and clinical significance of the spatial tumor-infiltrating lymphocyte patterns in non-small cell lung cancer. Clin. Cancer Res. 30, 998–1008 (2024).

    PubMed  Google Scholar 

  186. Zhang, T. et al. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Sci. Immunol. 9, eadh2334 (2024).

    CAS  PubMed  Google Scholar 

  187. Francisco-Cruz, A. et al. Analysis of immune intratumor heterogeneity highlights immunoregulatory and coinhibitory lymphocytes as hallmarks of recurrence in stage I non-small cell lung cancer. Mod. Pathol. 36, 100028 (2023).

    PubMed  PubMed Central  Google Scholar 

  188. Chen, J. H. et al. Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy. Nat. Immunol. 25, 644–658 (2024).

    CAS  PubMed  Google Scholar 

  189. Espinosa-Carrasco, G. et al. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. Cancer Cell 42, 1202–1216 (2024).

    CAS  PubMed  Google Scholar 

  190. Magen, A. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    CAS  PubMed  Google Scholar 

  192. Giraldo, N. A. et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin. Cancer Res. 21, 3031–3040 (2015).

    CAS  PubMed  Google Scholar 

  193. Gupta, P. K. et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog. 11, e1005177 (2015).

    PubMed  PubMed Central  Google Scholar 

  194. Yossef, R. et al. Phenotypic signatures of circulating neoantigen-reactive CD8+ T cells in patients with metastatic cancers. Cancer Cell 41, 2154–2165 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

    CAS  PubMed  Google Scholar 

  196. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593 (2021).

    CAS  PubMed  Google Scholar 

  197. Tscharke, D. C., Croft, N. P., Doherty, P. C. & La Gruta, N. L. Sizing up the key determinants of the CD8+ T cell response. Nat. Rev. Immunol. 15, 705–716 (2015).

    CAS  PubMed  Google Scholar 

  198. Purcarea, A. et al. Signatures of recent activation identify a circulating T cell compartment containing tumor-specific antigen receptors with high avidity. Sci. Immunol. 7, eabm2077 (2022).

    CAS  PubMed  Google Scholar 

  199. Pasetto, A. et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Khunger, A., Rytlewski, J. A., Fields, P., Yusko, E. C. & Tarhini, A. A. The impact of CTLA-4 blockade and interferon-α on clonality of T-cell repertoire in the tumor microenvironment and peripheral blood of metastatic melanoma patients. Oncoimmunology 8, e1652538 (2019).

    PubMed  PubMed Central  Google Scholar 

  201. Yusko, E. et al. Association of tumor microenvironment T-cell repertoire and mutational load with clinical outcome after sequential checkpoint blockade in melanoma. Cancer Immunol. Res. 7, 458–465 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Inoue, H. et al. Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma. Oncoimmunology 5, e1204507 (2016).

    PubMed  PubMed Central  Google Scholar 

  203. Roh, W. et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aah3560 (2017).

  204. Forde, P. M., Chaft, J. E. & Pardoll, D. M. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 379, e14 (2018).

    PubMed  Google Scholar 

  205. Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 25, 470–476 (2019).

    CAS  PubMed  Google Scholar 

  206. Zhong, S. et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc. Natl Acad. Sci. USA 110, 6973–6978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Weiss, V. L. et al. Trafficking of high avidity HER-2/neu-specific T cells into HER-2/neu-expressing tumors after depletion of effector/memory-like regulatory T cells. PLoS ONE 7, e31962 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Allard, M. et al. TCR-ligand dissociation rate is a robust and stable biomarker of CD8+ T cell potency. JCI Insight https://doi.org/10.1172/jci.insight.92570 (2017).

  209. Martinez-Usatorre, A., Donda, A., Zehn, D. & Romero, P. PD-1 blockade unleashes effector potential of both high- and low-affinity tumor-infiltrating T cells. J. Immunol. 201, 792–803 (2018).

    CAS  PubMed  Google Scholar 

  210. Black, C. M., Armstrong, T. D. & Jaffee, E. M. Apoptosis-regulated low-avidity cancer-specific CD8+ T cells can be rescued to eliminate HER2/neu-expressing tumors by costimulatory agonists in tolerized mice. Cancer Immunol. Res. 2, 307–319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Janicki, C. N., Jenkinson, S. R., Williams, N. A. & Morgan, D. J. Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration. Cancer Res. 68, 2993–3000 (2008).

    CAS  PubMed  Google Scholar 

  212. Bos, R., Marquardt, K. L., Cheung, J. & Sherman, L. A. Functional differences between low- and high-affinity CD8+ T cells in the tumor environment. Oncoimmunology 1, 1239–1247 (2012).

    PubMed  PubMed Central  Google Scholar 

  213. Caserta, S., Kleczkowska, J., Mondino, A. & Zamoyska, R. Reduced functional avidity promotes central and effector memory CD4 T cell responses to tumor-associated antigens. J. Immunol. 185, 6545–6554 (2010).

    CAS  PubMed  Google Scholar 

  214. Gettinger, S. et al. Impaired HLA Class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Liu, Z. et al. Progenitor-like exhausted SPRY1+ CD8+ T cells potentiate responsiveness to neoadjuvant PD-1 blockade in esophageal squamous cell carcinoma. Cancer Cell 41, 1852–1870 (2023).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by NIH grants R37CA245154, R01CA262377, R01CA216579 and P50CA196530.

Author information

Authors and Affiliations

Authors

Contributions

M.L.d.R., M.V.-E. and K.A.S. researched data for the article and wrote the manuscript. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kurt A. Schalper.

Ethics declarations

Competing interests

M.F.S. had received fees for consultancy from Bristol Myers Squibb, MSD, Numab and Roche; and his laboratory has received funding from Bristol Myers Squibb and Roche. L.C. has been a consultant for NextCure, OncoC4, Tcelltech and Zai Lab; is a scientific founder of DynamiCure, NextCure, Normunity and Tcelltech; and his laboratory has received funding from DynamiCure, NextCure and Normunity. D.L.R. has served as an adviser for Agendia, Amgen, AstraZeneca, Bristol Myers Squibb, Cell Signalling Technology, Cepheid, Danaher, Daiichi Sankyo, Genoptix/Novartis, GSK, Halda Biotherapeutics, Incendia, Konica Minolta, Merck, NanoString, PAIGE.AI, Perkin Elmer, Roche, Sanofi and Ventana; and his laboratory has received funding from Amgen, Cepheid, Navigate Biopharma, NextCure, Leica and Konica Minolta. K.A.S. has served as a consultant, adviser or speaker for Agenus, AstraZeneca, Bristol Myers Squibb, Clinica Alemana Santiago, CSRlife, Dynamicure, EMD Serono, Forefront Collaborative, Genmab, Indaptus, Merck, Merus, Moderna, Molecular Templates, OnCusp, Parthenon Therapeutics, PeerView, Physicians Education Resource, Roche, Sanofi, Shattuck Labs, Takeda and Torque/Repertoire Therapeutics; and his laboratory has received research funding from Akoya Biosciences, AstraZeneca, Boehringer-Ingelheim, Bristol Myers Squibb, Eli Lilly, Merck, NextPoint Therapeutics, Ribon Therapeutics, Roche, Surface Oncology, Takeda and Tesaro/GSK. M.L.d.R. and M.V.-E. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Donia, C. Haymaker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez de Rodas, M., Villalba-Esparza, M., Sanmamed, M.F. et al. Biological and clinical significance of tumour-infiltrating lymphocytes in the era of immunotherapy: a multidimensional approach. Nat Rev Clin Oncol 22, 163–181 (2025). https://doi.org/10.1038/s41571-024-00984-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00984-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer