Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deciphering the mechanism underlying late-onset Alzheimer disease

Abstract

Despite tremendous investments in understanding the complex molecular mechanisms underlying Alzheimer disease (AD), recent clinical trials have failed to show efficacy. A potential problem underlying these failures is the assumption that the molecular mechanism mediating the genetically determined form of the disease is identical to the one resulting in late-onset AD. Here, we integrate experimental evidence outside the 'spotlight' of the genetic drivers of amyloid-β (Aβ) generation published during the past two decades, and present a mechanistic explanation for the pathophysiological changes that characterize late-onset AD. We propose that chronic inflammatory conditions cause dysregulation of mechanisms to clear misfolded or damaged neuronal proteins that accumulate with age, and concomitantly lead to tau-associated impairments of axonal integrity and transport. Such changes have several neuropathological consequences: focal accumulation of mitochondria, resulting in metabolic impairments; induction of axonal swelling and leakage, followed by destabilization of synaptic contacts; deposition of amyloid precursor protein in swollen neurites, and generation of aggregation-prone peptides; further tau hyperphosphorylation, ultimately resulting in neurofibrillary tangle formation and neuronal death. The proposed sequence of events provides a link between Aβ and tau-related neuropathology, and underscores the concept that degenerating neurites represent a cause rather than a consequence of Aβ accumulation in late-onset AD.

Key Points

  • Despite tremendous investments in basic and clinical research, no cure or preventive treatment for Alzheimer disease (AD) exists

  • A re-evaluation of the current view of the mechanisms underlying late-onset AD pathology is a prerequisite for future translational approaches

  • Inflammatory processes are strongly correlated with AD onset and progression in humans, and could have a pivotal role in disease aetiology

  • Chronic inflammation coupled with neuronal ageing induces cellular stress and concomitant impairments in basic neuronal functions

  • Inflammation-induced hyperphosphorylation and missorting of tau might represent one of the earliest neuropathological changes in late-onset AD

  • Molecular changes underlying late-onset AD involve impairments in cytoskeleton stability and axonal transport, which could trigger axonal degeneration and formation of senile plaques and neurofibrillary tangles, resulting in neuronal death

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The inflammation hypothesis of late-onset Alzheimer disease.
Figure 2: Axonal swellings and leakage as a trigger of senile plaque formation in patients with Alzheimer disease.

Similar content being viewed by others

References

  1. Ferri, C. P. et al. Global prevalence of dementia: a Delphi consensus study. Lancet 366, 2112–2117 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Castellani, R. J., Rolston, R. K. & Smith, M. A. Alzheimer disease. Dis. Mon. 56, 484–546 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Serrano-Pozo, A., Frosch, M. P., Masliah, E. & Hyman, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hardy, J. A. & Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Herrup, K. Reimagining Alzheimer's disease—an age-based hypothesis. J. Neurosci. 30, 16755–16762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Gerrish, A. et al. The role of variation at AβPP, PSEN1, PSEN2, and MAPT in late onset Alzheimer's disease. J. Alzheimers Dis. 28, 377–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cribbs, D. H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflammation 9, 179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGeer, P. L. & McGeer, E. G. Local neuroinflammation and the progression of Alzheimer's disease. J. Neurovirol. 8, 529–538 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Swardfager, W. et al. A meta-analysis of cytokines in Alzheimer's disease. Biol. Psychiatry 68, 930–941 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  14. Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer, U. et al. Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge. Neuropsychopharmacology 33, 441–456 (2008).

    Article  PubMed  Google Scholar 

  16. Knuesel, I. et al. Age-related accumulation of Reelin in amyloid-like deposits. Neurobiol. Aging 30, 697–716 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Krstic, D. et al. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J. Neuroinflammation 9, 151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holmes, C. et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 73, 768–774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheng, J. G. et al. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol. Aging 17, 761–766 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doehner, J., Genoud, C., Imhof, C., Krstic, D. & Knuesel, I. Extrusion of misfolded and aggregated proteins—a protective strategy of aging neurons? Eur. J. Neurosci. 35, 1938–1950 (2012).

    Article  PubMed  Google Scholar 

  21. Doehner, J., Madhusudan, A., Konietzko, U., Fritschy, J. M. & Knuesel, I. Co-localization of Reelin and proteolytic AβPP fragments in hippocampal plaques in aged wild-type mice. J. Alzheimers Dis. 19, 1339–1357 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Fiala, J. C., Feinberg, M., Peters, A. & Barbas, H. Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct. Funct. 212, 195–207 (2007).

    Article  PubMed  Google Scholar 

  23. Price, D. L. et al. Aged non-human primates: an animal model of age-associated neurodegenerative disease. Brain Pathol. 1, 287–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Kanaan, N. M. et al. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J. Neurosci. 31, 9858–9868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shahpasand, K. et al. Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer's disease. J. Neurosci. 32, 2430–2441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shemesh, O. A., Erez, H., Ginzburg, I. & Spira, M. E. Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9, 458–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Iijima-Ando, K. et al. Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1. PLoS Genet. 8, e1002918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao, A. W. et al. The origin and development of plaques and phosphorylated tau are associated with axonopathy in Alzheimer's disease. Neurosci. Bull. 27, 287–299 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoover, B. R. et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68, 1067–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nixon, R. A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113–122 (2005).

    Article  PubMed  Google Scholar 

  31. Nixon, R. A. & Yang, D. S. Autophagy failure in Alzheimer's disease—locating the primary defect. Neurobiol. Dis. 43, 38–45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sergeant, N. et al. Truncated beta-amyloid peptide species in pre-clinical Alzheimer's disease as new targets for the vaccination approach. J. Neurochem. 85, 1581–1591 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. McGeer, P. L. et al. Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy. J. Neurosci. Res. 31, 428–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Perry, G. et al. Immunolocalization of the amyloid precursor protein within the senile plaque. Prog. Clin. Biol. Res. 317, 1021–1025 (1989).

    CAS  PubMed  Google Scholar 

  35. Malamud, N. & Hirano, A. Atlas of Neuropathology 2nd edn 314–327 (University of California Press, Berkley, Los Angeles, London, 1974).

  36. Kocherhans, S. et al. Reduced Reelin expression accelerates amyloid-beta plaque formation and tau pathology in transgenic Alzheimer's disease mice. J. Neurosci. 30, 9228–9240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McGeer, P. L., Schulzer, M. & McGeer, E. G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology 47, 425–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt, R. et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu–Asia Aging Study. Ann. Neurol. 52, 168–174 (2002).

    Article  PubMed  Google Scholar 

  39. Engelhart, M. J. et al. Inflammatory proteins in plasma and the risk of dementia: the Rotterdam Study. Arch. Neurol. 61, 668–672 (2004).

    Article  PubMed  Google Scholar 

  40. Dunn, N., Mullee, M., Perry, V. H. & Holmes, C. Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Dis. Assoc. Disord. 19, 91–94 (2005).

    Article  PubMed  Google Scholar 

  41. Aisen, P. S. et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289, 2819–2826 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Thal, L. J. et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 30, 1204–1215 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Breitner, J. C. et al. Extended results of the Alzheimer's disease anti-inflammatory prevention trial. Alzheimers Dement. 7, 402–411 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Crystal, H. et al. Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer's disease. Neurology 38, 1682–1687 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Snowdon, D. A. Aging and Alzheimer's disease: lessons from the Nun Study. Gerontologist 37, 150–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Lue, L. F., Brachova, L., Civin, W. H. & Rogers, J. Inflammation, Aβ deposition, and neurofibrillary tangle formation as correlates of Alzheimer's disease neurodegeneration. J. Neuropathol. Exp. Neurol. 55, 1083–1088 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Morimoto, K. et al. Expression profiles of cytokines in the brains of Alzheimer's disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J. Alzheimers Dis. 25, 59–76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parachikova, A. et al. Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol. Aging 28, 1821–1833 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Schwab, C., Hosokawa, M. & McGeer, P. L. Transgenic mice overexpressing amyloid beta protein are an incomplete model of Alzheimer disease. Exp. Neurol. 188, 52–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Maarouf, C. L. et al. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS One 6, e27291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Castellani, R. J. et al. Reexamining Alzheimer's disease: evidence for a protective role for amyloid-β protein precursor and amyloid-β. J. Alzheimers Dis. 18, 447–452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Edison, P. et al. Microglia, amyloid, and cognition in Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol. Dis. 32, 412–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Yokokura, M. et al. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 38, 343–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Andersen, K., Lolk, A., Kragh-Sorensen, P., Petersen, N. E. & Green, A. Depression and the risk of Alzheimer disease. Epidemiology 16, 233–238 (2005).

    Article  PubMed  Google Scholar 

  55. Balakrishnan, K. et al. Plasma Aβ42 correlates positively with increased body fat in healthy individuals. J. Alzheimers Dis. 8, 269–282 (2005).

    CAS  PubMed  Google Scholar 

  56. Biessels, G. J. & Kappelle, L. J. Increased risk of Alzheimer's disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem. Soc. Trans. 33, 1041–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Casserly, I. & Topol, E. Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. Lancet 363, 1139–1146 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Kamer, A. R. et al. TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects. J. Neuroimmunol. 216, 92–97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ownby, R. L., Crocco, E., Acevedo, A., John, V. & Loewenstein, D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch. Gen. Psychiatry 63, 530–538 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tizard, I. Sickness behavior, its mechanisms and significance. Anim. Health Res. Rev. 9, 87–99 (2008).

    Article  PubMed  Google Scholar 

  62. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cunningham, C., Campion, S., Teeling, J., Felton, L. & Perry, V. H. The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav. Immun. 21, 490–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Hannestad, J. et al. Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 63, 232–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Pitossi, F., del Rey, A., Kabiersch, A. & Besedovsky, H. Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J. Neurosci. Res. 48, 287–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Anisman, H., Gibb, J. & Hayley, S. Influence of continuous infusion of interleukin-1β on depression-related processes in mice: corticosterone, circulating cytokines, brain monoamines, and cytokine mRNA expression. Psychopharmacology (Berl.) 199, 231–244 (2008).

    Article  CAS  Google Scholar 

  67. Lemstra, A. W. et al. Microglia activation in sepsis: a case–control study. J. Neuroinflammation 4, 4 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Puentener, U., Booth, S. G., Perry, V. H. & Teeling, J. L. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J. Neuroinflammation 9, 146 (2012).

    Google Scholar 

  69. Lee, C. K., Weindruch, R. & Prolla, T. A. Gene-expression profile of the ageing brain in mice. Nat. Genet. 25, 294–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Franceschi, C. et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Cunningham, C. & Maclullich, A. M. At the extreme end of the psychoneuroimmunological spectrum: delirium as a maladaptive sickness behaviour response. Brain. Behav. Immun. http://dx.doi.org/10.1016/j.bbi.2012.07.012.

  73. Norden, D. M. & Godbout, J. P. Microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol. Appl. Neurobiol. http://dx.doi.org/10.1111/j.1365-2990.2012.01306.x.

  74. Wynne, A. M., Henry, C. J. & Godbout, J. P. Immune and behavioral consequences of microglial reactivity in the aged brain. Integr. Comp. Biol. 49, 254–266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barrientos, R. M. et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol. Aging 27, 723–732 (2006).

    Article  PubMed  Google Scholar 

  76. Godbout, J. P. et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 19, 1329–1331 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Barrientos, R. M. et al. Time course of hippocampal IL-1 β and memory consolidation impairments in aging rats following peripheral infection. Brain. Behav. Immun. 23, 46–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Henry, C. J., Huang, Y., Wynne, A. M. & Godbout, J. P. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory IL-10 cytokines. Brain. Behav. Immun. 23, 309–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, C. Y. & Landreth, G. E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117, 949–960 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Grathwohl, S. A. et al. Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia. Nat. Neurosci. 12, 1361–1363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chung, H., Brazil, M. I., Soe, T. T. & Maxfield, F. R. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid β-peptide by microglial cells. J. Biol. Chem. 274, 32301–32308 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Njie, E. G. et al. Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol. Aging 33, 195.e1–195.e12 (2012).

    Article  CAS  Google Scholar 

  83. Sheng, J. G., Mrak, R. E. & Griffin, W. S. Neuritic plaque evolution in Alzheimer's disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol. 94, 1–5 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Peri, F. & Nusslein-Volhard, C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133, 916–927 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. McGeer, P. L., Itagaki, S., Tago, H. & McGeer, E. G. Occurrence of HLA-DR reactive microglia in Alzheimer's disease. Ann. NY Acad. Sci. 540, 319–323 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Streit, W. J., Braak, H., Xue, Q. S. & Bechmann, I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathol. 118, 475–485 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hoozemans, J. J., Rozemuller, A. J., van Haastert, E. S., Eikelenboom, P. & van Gool, W. A. Neuroinflammation in Alzheimer's disease wanes with age. J. Neuroinflammation 8, 171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bhaskar, K. et al. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68, 19–31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gorlovoy, P., Larionov, S., Pham, T. T. & Neumann, H. Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J. 23, 2502–2513 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Li, Y., Liu, L., Barger, S. W. & Griffin, W. S. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 23, 1605–1611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sarlus, H. et al. Allergy influences the inflammatory status of the brain and enhances tau phosphorylation. J. Cell. Mol. Med. 16, 2401–2412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnson, G. V. & Stoothoff, W. H. Tau phosphorylation in neuronal cell function and dysfunction. J. Cell Sci. 117, 5721–5729 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Fulga, T. A. et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol. 9, 139–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Iqbal, K. et al. Defective brain microtubule assembly in Alzheimer's disease. Lancet 2, 421–426 (1986).

    Article  CAS  PubMed  Google Scholar 

  95. Terry, R. D. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol. 55, 1023–1025 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Praprotnik, D., Smith, M. A., Richey, P. L., Vinters, H. V. & Perry, G. Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer's disease. Acta Neuropathol. 91, 226–235 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Stokin, G. B. & Goldstein, L. S. Axonal transport and Alzheimer's disease. Ann. Rev. Biochem. 75, 607–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Stieber, A., Mourelatos, Z. & Gonatas, N. K. In Alzheimer's disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic. Am. J. Pathol. 148, 415–426 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lazarov, O. et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer's disease-linked mutant presenilin 1. J. Neurosci. 27, 7011–7020 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pigino, G., Pelsman, A., Mori, H. & Busciglio, J. Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J. Neurosci. 21, 834–842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rodrigues, E. M., Weissmiller, A. M. & Goldstein, L. S. Enhanced β-secretase processing alters APP axonal transport and leads to axonal defects. Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/dds297.

  102. Tesseur, I. et al. Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am. J. Pathol. 157, 1495–1510 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Seifert, U. et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142, 613–624 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Gavilan, M. P. et al. Molecular and cellular characterization of the age-related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. J. Neurochem. 103, 984–996 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Pintado, C. et al. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J. Neuroinflammation 9, 87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Forloni, G., Demicheli, F., Giorgi, S., Bendotti, C. & Angeretti, N. Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res. Mol. Brain Res. 16, 128–134 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Sheng, J. G. et al. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid β peptide in APPswe transgenic mice. Neurobiol. Dis. 14, 133–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Griffin, W. S. et al. Microglial interleukin-1 alpha expression in human head injury: correlations with neuronal and neuritic beta-amyloid precursor protein expression. Neurosci. Lett. 176, 133–136 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Itoh, T. et al. Expression of amyloid precursor protein after rat traumatic brain injury. Neurol. Res. 31, 103–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Johnson, V. E., Stewart, W. & Smith, D. H. Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 22, 142–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Mouzon, B. C. et al. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. J. Neurotrauma http://dx.doi.org/10.1089/neu.2012.2498.

  114. Groemer, T. W. et al. Amyloid precursor protein is trafficked and secreted via synaptic vesicles. PLoS One 6, e18754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Koo, E. H. et al. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc. Natl Acad. Sci. USA 87, 1561–1565 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Morales-Corraliza, J. et al. In vivo turnover of tau and APP metabolites in the brains of wild-type and Tg2576 mice: greater stability of sAPP in the β-amyloid depositing mice. PLoS One 4, e7134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ichihara, N. et al. Axonal degeneration promotes abnormal accumulation of amyloid β-protein in ascending gracile tract of gracile axonal dystrophy (GAD) mouse. Brain Res. 695, 173–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Lee, S., Sato, Y. & Nixon, R. A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J. Neurosci. 31, 7817–7830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weyer, S. W. et al. APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J. 30, 2266–2280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Wirths, O., Weis, J., Szczygielski, J., Multhaup, G. & Bayer, T. A. Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer's disease. Acta Neuropathol. 111, 312–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Martin, L. J., Pardo, C. A., Cork, L. C. & Price, D. L. Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am. J. Pathol. 145, 1358–1381 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yu, W. H. et al. Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell. Biol. 171, 87–98 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cataldo, A. M. & Nixon, R. A. Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc. Natl Acad. Sci. USA 87, 3861–3865 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schechter, I. & Ziv, E. Cathepsins S, B and L with aminopeptidases display β-secretase activity associated with the pathogenesis of Alzheimer's disease. Biol. Chem. 392, 555–569 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Jin, M. et al. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc. Natl Acad. Sci. USA 108, 5819–5824 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Brecht, W. J. et al. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24, 2527–2534 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou, W., Scott, S. A., Shelton, S. B. & Crutcher, K. A. Cathepsin D-mediated proteolysis of apolipoprotein E: possible role in Alzheimer's disease. Neuroscience 143, 689–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Adalbert, R. et al. Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain 132, 402–416 (2009).

    Article  PubMed  Google Scholar 

  130. Scheff, S. W., Price, D. A., Schmitt, F. A. & Mufson, E. J. Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Misko, A. L., Sasaki, Y., Tuck, E., Milbrandt, J. & Baloh, R. H. Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J. Neurosci. 32, 4145–4155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ittner, L. M. & Gotz, J. Amyloid-β and tau—a toxic pas de deux in Alzheimer's disease. Nat. Rev. Neurosci. 12, 65–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Yilmazer-Hanke, D. M. & Hanke, J. Progression of Alzheimer-related neuritic plaque pathology in the entorhinal region, perirhinal cortex and hippocampal formation. Dement. Geriatr. Cogn. Disord. 10, 70–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Schmidt, M. L., DiDario, A. G., Lee, V. M. & Trojanowski, J. Q. An extensive network of PHF tau-rich dystrophic neurites permeates neocortex and nearly all neuritic and diffuse amyloid plaques in Alzheimer disease. FEBS Lett. 344, 69–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. de Calignon, A. et al. Caspase activation precedes and leads to tangles. Nature 464, 1201–1204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Buki, A., Okonkwo, D. O., Wang, K. K. & Povlishock, J. T. Cytochrome c release and caspase activation in traumatic axonal injury. J. Neurosci. 20, 2825–2834 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rohn, T. T. et al. Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol. Dis. 11, 341–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Leroy, K. et al. Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice. Am. J. Pathol. 171, 976–992 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Swiss National Science Foundation, grant number 310030-132629, the Gottfried und Julia Bangerter-Rhyner Foundation, and the Olga Mayenfisch Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, discussions of the content, writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Irene Knuesel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krstic, D., Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9, 25–34 (2013). https://doi.org/10.1038/nrneurol.2012.236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing