Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = trimethylchlorosilane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 8815 KiB  
Article
Preparation and Modification of Silicalite-2 Membranes
by Yin Yang, Juan Liu, Qi Zhou, Siqi Shao, Lingling Zou, Wenjun Yuan, Meihua Zhu, Xiangshu Chen and Hidetoshi Kita
Membranes 2025, 15(2), 54; https://doi.org/10.3390/membranes15020054 - 8 Feb 2025
Viewed by 456
Abstract
Silicalite-2 membranes were successfully prepared on tubular α-Al2O3 supports by secondary hydrothermal synthesis, and the pervaporation performance of the membrane was evaluated by separation of a 5 wt% ethanol/H2O mixture at 60 °C. The effects of templating agent [...] Read more.
Silicalite-2 membranes were successfully prepared on tubular α-Al2O3 supports by secondary hydrothermal synthesis, and the pervaporation performance of the membrane was evaluated by separation of a 5 wt% ethanol/H2O mixture at 60 °C. The effects of templating agent content, water–silicon ratio and crystallization time on the separation performance of Silicalite-2 membranes were investigated. When the TBAOH/SiO2 and H2O/SiO2 molar ratios of the precursor synthesis solution were 0.2 and 120, a dense Silicalite-2 membrane could be prepared on the surface of the tubular α-Al2O3 support after 72 h. The silane coupling agent was utilized to treat the Silicalite-2 membranes, and the effects of silane coupling agent dosage on their properties were also explored. The pervaporation performance of the Silicalite-2 membrane was greatly improved with a 5.7 wt% trimethylchlorosilane (TMCS) solution and the flux and separation factor of the membrane reached 1.75 kg·m−2·h−1 and 22 for separation of 5 wt% EtOH/H2O at 60 °C, respectively. Full article
Show Figures

Figure 1

20 pages, 3054 KiB  
Article
Insights into the Silylation of Benzodiazepines Using N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA): In Search of Optimal Conditions for Forensic Analysis by GC-MS
by Eleazar Vargas Mena, Eliana R. Herrera Giraldo and Jovanny A. Gómez Castaño
Molecules 2024, 29(24), 5884; https://doi.org/10.3390/molecules29245884 - 13 Dec 2024
Cited by 1 | Viewed by 684
Abstract
Silylation is a widely used derivatization technique for the gas chromatographic analysis of benzodiazepines, a class of psychoactive drugs commonly encountered in forensic and biological samples. This study investigated the optimal experimental conditions for the silylation of benzodiazepines using N,O-bis(trimethylsilyl)trifluoroacetamide [...] Read more.
Silylation is a widely used derivatization technique for the gas chromatographic analysis of benzodiazepines, a class of psychoactive drugs commonly encountered in forensic and biological samples. This study investigated the optimal experimental conditions for the silylation of benzodiazepines using N,O-bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane (BSTFA + 1% TMCS), a widely employed silylating agent. Ten structurally different benzodiazepines, including variations within the classic 1,4-benzodiazepine core and triazolo ring derivatives, were selected to address the effect of structural diversity on silylation. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to optimize the silylation of benzodiazepines by means of GC-MS analysis. PCA identified key experimental factors influencing silylation efficiency and distinct response patterns of different benzodiazepines. HCA further categorized the benzodiazepines based on their silylation behavior, highlighting the need for tailored derivatization strategies. The results indicated that the BSTFA + 1% TMCS concentration and solvent volume were pivotal for achieving high silylation efficiency, whereas the temperature, reaction time, and catalyst were less critical. The optimized method was successfully applied to 30 real forensic samples, demonstrating its efficacy in detecting and identifying various benzodiazepines, including designer drugs like etizolam. This study provides a foundation for improving drug detection methodologies in forensic toxicology and provides useful insights into the dynamics of benzodiazepine silylation and the use of individualized analysis parameters. Full article
(This article belongs to the Special Issue Analytical Chemistry in Forensic Science)
Show Figures

Figure 1

24 pages, 10317 KiB  
Article
Magnetic CuFe2O4 Nanoparticles Immobilized on Modified Rice Husk-Derived Zeolite for Chlorogenic Acid Adsorption
by Tainara Ramos Neves, Letícia Ferreira Lacerda Schildt, Maria Luiza Lopes Sierra e Silva, Vannyla Viktória Viana Vasconcelos, Corrado Di Conzo, Francesco Mura, Marco Rossi, Gaspare Varvaro, Maryam Abdolrahimi, Simone Quaranta, Sandra Aparecida Duarte Ferreira and Elaine Cristina Paris
Magnetochemistry 2024, 10(11), 87; https://doi.org/10.3390/magnetochemistry10110087 - 4 Nov 2024
Viewed by 1767
Abstract
Adsorption has emerged as a promising method for removing polyphenols in water remediation. This work explores chlorogenic acid (CGA) adsorption on zeolite-based magnetic nanocomposites synthesized from rice husk waste. In particular, enhanced adsorbing materials were attained using a hydrothermal zeolite precursor (Z18) synthesized [...] Read more.
Adsorption has emerged as a promising method for removing polyphenols in water remediation. This work explores chlorogenic acid (CGA) adsorption on zeolite-based magnetic nanocomposites synthesized from rice husk waste. In particular, enhanced adsorbing materials were attained using a hydrothermal zeolite precursor (Z18) synthesized from rice husk and possessing a remarkable specific surface area (217.69 m2 g−1). A composite material was prepared by immobilizing magnetic copper ferrite on Z18 (Z18:CuFe2O4) to recover the zeolite adsorbent. In addition, Z18 was modified (Z18 M) with a mixture of 3-aminopropyltriethoxysilane (APTES) and trimethylchlorosilane (TMCS) to improve the affinity towards organic compounds in the final nanocomposite system (Z18 M:CuFe2O4). While the unmodified composite demonstrated inconsequential CGA removal rates, Z18 M:CuFe2O4 could adsorb 89.35% of CGA within the first hour of operation. Z18 M:CuFe2O4 showed no toxicity for seed germination and achieved a mass recovery of 85% (due to a saturation magnetization of 4.1 emu g−1) when an external magnetic field was applied. These results suggest that adsorbing magnetic nanocomposites are amenable to CGA polyphenol removal from wastewater. Furthermore, the reuse, revalorization, and conversion into value-added materials of agro-industrial waste may allow the opportunity to implement sustainability and work towards a circular economy. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Graphical abstract

17 pages, 15668 KiB  
Article
Experimental Investigation of the Combustion Characteristics and Thermal Hazards of Methylsilyl-Modified Silica Aerogels
by Xiaoxu Wu, Kai Shen, Min Hu, Fang Zhou, Zikang Chen, Qiong Liu, Zijun Li and Zhi Li
Gels 2024, 10(11), 702; https://doi.org/10.3390/gels10110702 - 30 Oct 2024
Viewed by 1058
Abstract
The thermal safety of hydrophobic silica aerogels (SAs) is essential to thermal insulation applications. Herein, trimethylchlorosilane (TMCS), dimethyldichlorosilane (DMDCS), and methyltrichlorosilane (MTCS) were employed as surface modifiers to prepare three different methylsilyl-modified SAs (i.e., TSA, DSA, and MSA) and their combustion characteristics and [...] Read more.
The thermal safety of hydrophobic silica aerogels (SAs) is essential to thermal insulation applications. Herein, trimethylchlorosilane (TMCS), dimethyldichlorosilane (DMDCS), and methyltrichlorosilane (MTCS) were employed as surface modifiers to prepare three different methylsilyl-modified SAs (i.e., TSA, DSA, and MSA) and their combustion characteristics and thermal hazards were experimentally studied in detail. The cone calorimeter test found that the three SAs have similar combustion processes and the variations in ignition time and fire spread rate with the heat flux obey simple logarithmic and linear relationships, respectively. It further found that TSA has the most methylsilyl groups on silica skeletons and thus has the largest heat release, followed by DSA and MSA in turn, implying that TSA has the greatest fire hazard among the three SAs. These results further demonstrate that the type and quantity of methylsilyl groups on the skeletons of SAs significantly affect the thermal hazard of methylsilyl-modified SAs. In addition, the combustion mechanism of the methylsilyl-modified SAs is discussed. In total, this work experimentally studies the combustion characteristics of methylsilyl-modified SAs and compares their thermal hazards, clarifying the potential fire risk of methylsilyl-modified SAs in practical thermal insulation applications. Full article
(This article belongs to the Special Issue Safety of Aerogel Materials)
Show Figures

Graphical abstract

20 pages, 11978 KiB  
Article
Superhydrophobic Coating Based on Nano-Silica Modification for Antifog Application of Partition Glass
by Linfei Yu, Kaiyang Ma, Hong Yin, Chenliang Zhou, Wenxiu He, Gewen Yu, Qiang Zhang, Quansheng Liu and Yanxiong Zhao
Coatings 2024, 14(11), 1375; https://doi.org/10.3390/coatings14111375 - 29 Oct 2024
Cited by 2 | Viewed by 1180
Abstract
In this study, vinyl triethoxysilane (VTES), KH-560 and trimethylchlorosilane (TMCS) were used to modify the surface groups of commercially available nano-silica (SiO2, 50 nm), and ethylene vinyl acetate copolymer (EVA) was used as a film-forming agent. EVA/SiO2, EVA/V-SiO2 [...] Read more.
In this study, vinyl triethoxysilane (VTES), KH-560 and trimethylchlorosilane (TMCS) were used to modify the surface groups of commercially available nano-silica (SiO2, 50 nm), and ethylene vinyl acetate copolymer (EVA) was used as a film-forming agent. EVA/SiO2, EVA/V-SiO2, EVA/K-SiO2 and EVA/T-SiO2 coatings were prepared, respectively. The coatings were characterized by SEM, FTIR, TG and contact angle. It was found that when the mass percentage of SiO2 was 66 wt%, the hydrophobicity performance of the coating could be significantly improved by silica modification. Compared to the EVA/SiO2, the water contact angle (WCA) of the EVA/V-SiO2, EVA/K-SiO2 and EVA/T-SiO2 were increased by 24.0%, 14.4% and 24.6%, respectively. The FTIR results indicated that VTES, KH-560 and TMCS could effectively replace the -OH groups on the surface of the SiO2 after hydrolysis, resulting in the presence of water transport groups on the SiO2 surface. The TG results certified that TMCS had the highest substitution rate (24.6%) for the -OH groups on the SiO2 surface after the hydrolysis. Additionally, the SEM results indicated that T-SiO2 was more easily dispersed in the EVA film-forming agent, leading to a uniform micro–nano surface rough structure, which aligned with the Cassie–Wenzel model. The durability test had demonstrated that the EVA/T-SiO2 maintained its hydrophobic properties even after enduring 40,000 drops of water and the impact of 200 g of sand. Furthermore, it exhibited excellent resistance to acid corrosion, along with superior self-cleaning properties and an anti-fog performance. It also provided outstanding protection against high temperatures and UV radiation for outdoor applications. Full article
Show Figures

Figure 1

13 pages, 5297 KiB  
Article
Preparation of Hydrophobic Au Catalyst and Application in One-Step Oxidative Esterification of Methacrolein to Methyl Methacrylate
by Yanxia Zheng, Yubo Yang, Yixuan Li, Lu Cai, Xuanjiao Zhao, Bing Xue, Yuchao Li, Jiutao An and Jialiang Zhang
Molecules 2024, 29(8), 1854; https://doi.org/10.3390/molecules29081854 - 19 Apr 2024
Viewed by 1336
Abstract
The water produced during the oxidative esterification reaction occupies the active sites and reduces the activity of the catalyst. In order to reduce the influence of water on the reaction system, a hydrophobic catalyst was prepared for the one-step oxidative esterification of methylacrolein [...] Read more.
The water produced during the oxidative esterification reaction occupies the active sites and reduces the activity of the catalyst. In order to reduce the influence of water on the reaction system, a hydrophobic catalyst was prepared for the one-step oxidative esterification of methylacrolein (MAL) and methanol. The catalyst was synthesized by loading the active component Au onto ZnO using the deposition–precipitation method, followed by constructing the silicon shell on Au/ZnO using tetraethoxysilane (TEOS) to introduce hydrophobic groups. Trimethylchlorosilane (TMCS) was used as a hydrophobic modification reagent to prepare hydrophobic catalysts, which exhibited a water droplet contact angle of 111.2°. At a temperature of 80 °C, the hydrophobic catalyst achieved a high MMA selectivity of over 95%. The samples were characterized using XRD, N2 adsorption, ICP, SEM, TEM, UV-vis, FT-IR, XPS, and water droplet contact angle measurements. Kinetic analysis revealed an activation energy of 22.44 kJ/mol for the hydrophobic catalyst. Full article
(This article belongs to the Special Issue Design, Synthesis and Application of Heterogeneous Catalysts)
Show Figures

Graphical abstract

24 pages, 5498 KiB  
Article
Origin of the Springback Effect in Ambient-Pressure-Dried Silica Aerogels: The Effect of Surface Silylation
by Fabian Zemke, Julien Gonthier, Ernesto Scoppola, Ulla Simon, Maged F. Bekheet, Wolfgang Wagermaier and Aleksander Gurlo
Gels 2023, 9(2), 160; https://doi.org/10.3390/gels9020160 - 16 Feb 2023
Cited by 12 | Viewed by 3024
Abstract
Ambient pressure drying (APD) can prospectively reduce the costs of aerogel fabrication and processing. APD relies solely on preventing shrinkage or making it reversible. The latter, i.e., the aerogel re-expansion after drying (so-called springback effect—SBE), needs to be controlled for reproducible aerogel fabrication [...] Read more.
Ambient pressure drying (APD) can prospectively reduce the costs of aerogel fabrication and processing. APD relies solely on preventing shrinkage or making it reversible. The latter, i.e., the aerogel re-expansion after drying (so-called springback effect—SBE), needs to be controlled for reproducible aerogel fabrication by APD. This can be achieved by an appropriate surface functionalization of aerogel materials (e.g., SiO2). This work addresses the fabrication of monolithic SiO2 aerogels and xerogels by APD. The effect of several silylation agents, i.e., trimethylchlorosilane, triethylchlorosilane, and hexamethyldisilazane on the SBE is studied in detail, applying several complementary experimental techniques, allowing the evaluation of the macroscopic and microscopic morphology as well as the composition of SiO2 aerogels. Here, we show that some physical properties, e.g., the bulk density, the macroscopic structure, and pore sizes/volumes, were significantly affected by the re-expansion. However, silylation did not necessarily lead to full re-expansion. Therefore, similarities in the molecular composition could not be equated to similarities in the SBE. The influences of steric hindrance and reactivity are discussed. The impact of silylation is crucial in tailoring the SBE and, as a result, the APD of monolithic aerogels. Full article
(This article belongs to the Special Issue Recent Advances in Aerogels)
Show Figures

Figure 1

18 pages, 7714 KiB  
Article
The Methyl Functionality of Monolithic Silica Xerogels Synthesized via the Co-Gelation Approach Combined with Surface Silylation
by Selay Sert Çok, Fatoş Koç, Zoltán Dudás and Nilay Gizli
Gels 2023, 9(1), 33; https://doi.org/10.3390/gels9010033 - 30 Dec 2022
Cited by 10 | Viewed by 2343
Abstract
The present research aims to investigate the chemical and morphological properties of the methylated silica xerogels produced via the co-gelation approach combined with surface silylation. In the sol–gel synthesis, methyltrimethoxysilane (MTMS) and tetraethylorthosilicate (TEOS) were utilized as silica precursors and trimethylchlorosilane (TMCS) served [...] Read more.
The present research aims to investigate the chemical and morphological properties of the methylated silica xerogels produced via the co-gelation approach combined with surface silylation. In the sol–gel synthesis, methyltrimethoxysilane (MTMS) and tetraethylorthosilicate (TEOS) were utilized as silica precursors and trimethylchlorosilane (TMCS) served as a silylating agent. Structural changes were observed depending on the MTMS/TEOS molar ratio and on the post-synthesis-performed surface silylation of the xerogels. Post-synthesis silylation plays a critical role in the exchanging of the surface silanols with methyl groups, preserving the monolithic form. The morphological and structural changes were followed by SEM, 29Si-MAS-NMR, FTIR spectroscopy, nitrogen porosimetry, and contact angle measurements. The results have shown significant structural variations depending especially on the MTMS content. With an increasing MTMS content, the morphology of the samples has changed from a micro/mesoporous texture to a meso/macroporous texture. A higher degree of methyl substitution has been achieved for the silylated samples both confirmed by the FTIR and 29Si-NMR results. On the other hand, only the samples with a high MTMS content could preserve their structural integrity after evaporative drying, and all have exhibited a high degree of hydrophobicity with θ > 140°. Full article
Show Figures

Figure 1

12 pages, 10944 KiB  
Article
An Evaluation of Immobilized Poly-(S)-N-(1-phenylethyl)acrylamide Chiral Stationary Phases
by Guangying Lu, Yiyuan Miao, Jianchao Zhao, Xin Chen and Yanxiong Ke
Separations 2023, 10(1), 11; https://doi.org/10.3390/separations10010011 - 24 Dec 2022
Viewed by 1346
Abstract
In this study, brush type and polymer type stationary phases were prepared based on (S)-N-(1-phenylethyl) acrylamide, and the polymeric stationary phase demonstrated superior chiral recognition ability. The two polymeric stationary phases were synthesized by two strategies, one was the [...] Read more.
In this study, brush type and polymer type stationary phases were prepared based on (S)-N-(1-phenylethyl) acrylamide, and the polymeric stationary phase demonstrated superior chiral recognition ability. The two polymeric stationary phases were synthesized by two strategies, one was the “grafting from” method, which obtained polymer CSP by initiating monomer polymerization on the surface of 3-methacrylatepropyl silica gel, and the other was “grafting to”, which fixed the copolymer of (S)-N-(1-phenylethyl) acrylamide and trimethoxysilylpropyl methacrylate on silica gel. A comparison of these two bonding modes revealed that the stationary phase produced by “grafting to” had higher chiral recognition ability. Further improvement can be achieved by the end-capping of silanol groups with trimethylchlorosilane to reduce non-enantioselective retention caused by residual silanol groups and improve the peak shape of enantiomers. Chiral separation in subcritical fluid chromatography was also studied. Similar enantioselectivity results with higher resolution were observed due to the improvement of peak shape. Full article
Show Figures

Figure 1

9 pages, 2376 KiB  
Article
Superhydrophobic SiO2/Trimethylchlorosilane Coating for Self-Cleaning Application of Construction Materials
by Aliya Kurbanova, Nurbala Myrzakhmetova, Nazgul Akimbayeva, Kazhmukhan Kishibayev, Marzhan Nurbekova, Yernar Kanagat, Arailym Tursynova, Tomiris Zhunussova, Aidar Seralin, Rabiga Kudaibergenova, Zhexenbek Toktarbay and Olzat Toktarbaiuly
Coatings 2022, 12(10), 1422; https://doi.org/10.3390/coatings12101422 - 28 Sep 2022
Cited by 16 | Viewed by 4026
Abstract
This study has demonstrated, for the first time, the potential application of coatings to protect bricks or architectures against detrimental atmospheric effects via a self-cleaning approach. In this research, a facile fabrication method was developed to produce amorphous SiO2 particles and their [...] Read more.
This study has demonstrated, for the first time, the potential application of coatings to protect bricks or architectures against detrimental atmospheric effects via a self-cleaning approach. In this research, a facile fabrication method was developed to produce amorphous SiO2 particles and their hierarchical structures via applying trimethylchlorosilane (TMCS). They were fully characterized by various surface analytic tools, including a goniometer, SEM, AFM, zeta sizer, and a spectroscopic technique (FTIR), and then applied as super hydrophobic coatings on glass and sand. The characterization results revealed that the SiO2 particles are amorphous, quasi-spherical particles with an average diameter of 250–300 nm, and the hierarchical structures in the film were assembled from building blocks of SiO2 and TMCS. The wettability of the films can be controlled by changing the pH of the SiO2/TCMS dispersion. A super hydrophobic surface with a water contact angle of 165° ± 1° was achieved at the isoelectric point of the films. The obtained translucent super hydrophobic SiO2/TMCS coatings show good self-cleaning performances for glass and sand as construction materials. This study indicated that the superhydrophobic coatings may have potential applications in the protection of buildings and construction architectures in the future. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

14 pages, 4886 KiB  
Article
Wear-Resistant Hydrophobic Coatings from Low Molecular Weight Polytetrafluoroethylene Formed on a Polyester Fabric
by Natalia P. Prorokova, Tatyana Yu. Kumeeva and Igor V. Kholodkov
Coatings 2022, 12(9), 1334; https://doi.org/10.3390/coatings12091334 - 14 Sep 2022
Cited by 4 | Viewed by 2212
Abstract
The paper presents a comparative analysis of the surface structure and morphology of hydrophobic coatings formed on a polyester fabric from various types of low molecular weight tetrafluoroethylenes by a new method. The low molecular weight compounds used include: ultrafine polytetrafluoroethylene of the [...] Read more.
The paper presents a comparative analysis of the surface structure and morphology of hydrophobic coatings formed on a polyester fabric from various types of low molecular weight tetrafluoroethylenes by a new method. The low molecular weight compounds used include: ultrafine polytetrafluoroethylene of the FORUM® trademark prepared through thermo-gas-dynamic decomposition of industrial polytetrafluoroethylene waste, and tetrafluoroethylene telomers, synthesized by radiation-chemical initiation from fluoromonomers in acetone, butyl chloride and trimethylchlorosilane solutions. The formation of coatings consists in deposition of low molecular weight tetrafluoroethylenes from solutions in supercritical carbon dioxide and organic solvents. The contact angle and water absorption of the polyester fabric with coatings containing the specified water-repellents are determined. The resistance of the achieved effect to various types of wear—washing, dry cleaning and abrasionis evaluated. The hydrophobic properties of the fabric are found to be affected by the coating plasticity characterized by the stiffness coefficient. The importance of this indicator to targeted changes in fabric properties is proved. All the considered types of low molecular weight polytetrafluoroethylene (PTFE) are shown to be effective water-repellents for the polyester fabric. Full article
(This article belongs to the Special Issue Efficiency of Coatings Formed in Various Ways)
Show Figures

Figure 1

12 pages, 2255 KiB  
Article
Research on Adsorption and Desorption Performance of Gas-Phase Naphthalene on Hydrophobic Modified FDU-15
by Chunyu Zhao, Yingshu Liu, Miaomiao Meng, Ziyi Li, Haihong Wang, Wenhai Liu and Xiong Yang
Processes 2022, 10(3), 574; https://doi.org/10.3390/pr10030574 - 15 Mar 2022
Cited by 2 | Viewed by 1952
Abstract
Naphthalene (NAP) is a typical gaseous polycyclic aromatic hydrocarbons (PAHs) pollutant that displays toxicological effects on biosystems. Ordered mesoporous carbon has relatively adequate adsorption capacity; however, the attached hydrophilic functional groups were proven to affect the adsorption performance in the presence of moisture. [...] Read more.
Naphthalene (NAP) is a typical gaseous polycyclic aromatic hydrocarbons (PAHs) pollutant that displays toxicological effects on biosystems. Ordered mesoporous carbon has relatively adequate adsorption capacity; however, the attached hydrophilic functional groups were proven to affect the adsorption performance in the presence of moisture. In this paper, trimethylchlorosilane (TMCS) is used to carry out the hydrophobic modification of ordered mesoporous carbon FDU-15, and the adsorption and desorption properties of FDU-15 were studied. Furthermore, the adsorption isotherms of naphthalene on FDU-15 and modified FDU-15 were fitted by L-F equation, and the kinetic parameters of desorption of naphthalene on modified FDU-15 were analyzed based on the method of temperature programming desorption (TPD). The results showed that the micropore volume and specific surface area of FDU-15 were significantly increased after hydrophobically modified by TMCS, and the polar functional groups of the hydrophobically modified FDU-15 were significantly reduced. Furthermore, the adsorption of naphthalene by FDU-15 before and after modification conformed to the L-F equation (R2 > 99%), and the adsorption of naphthalene by modified FDU-5 at low concentration was significantly improved due to the increase of micropores. Based on desorption kinetic performance study of modified FDU-15, it can be seen that the adsorption kinetic characteristics of naphthalene on the modified FDU-15 conform to the mechanical function of the JMA equation. When the mass ratio of TMCs to FDU-15 is 1:10 in the modification process, the pore structure and surface hydrophobicity of the modified FDU-15 reach an excellent balance. At this time, the adsorbent had the optimum desorption performance under experimental conditions, and the desorption activation energy was decreased from 60.98 kJ/mol of FDU-15 to 50.28 kJ/mol. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 4269 KiB  
Article
Robust SiO2–Al2O3/Agarose Composite Aerogel Beads with Outstanding Thermal Insulation Based on Coal Gangue
by Jie Gu, Chao Ji, Rui Fu, Xin Yang, Zhichen Wan, Lishuo Wen, Qiqi Song, Yinghui Liu, Yaxiong Wang and Huazheng Sai
Gels 2022, 8(3), 165; https://doi.org/10.3390/gels8030165 - 6 Mar 2022
Cited by 15 | Viewed by 4162
Abstract
Advanced SiO2–Al2O3 aerogel materials have outstanding potential in the field of thermal insulation. Nevertheless, the creation of a mechanically robust and low-cost SiO2–Al2O3 aerogel material remains a considerable challenge. In this study, SiO [...] Read more.
Advanced SiO2–Al2O3 aerogel materials have outstanding potential in the field of thermal insulation. Nevertheless, the creation of a mechanically robust and low-cost SiO2–Al2O3 aerogel material remains a considerable challenge. In this study, SiO2–Al2O3 aerogel based on coal gangue, which is a type of zero-cost inorganic waste, was constructed in porous agarose aerogel beads, followed by simple chemical vapor deposition of trimethylchlorosilane to fabricate SiO2–Al2O3/agarose composite aerogel beads (SCABs). The resulting SCABs exhibited a unique nanoscale interpenetrating network structure, which is lightweight and has high specific surface area (538.3 m2/g), hydrophobicity (approximately 128°), and excellent thermal stability and thermal insulation performance. Moreover, the compressive strength of the SCABs was dramatically increased by approximately a factor of ten compared to that of native SiO2–Al2O3 aerogel beads. The prepared SCABs not only pave the way for the design of a novel aerogel material for use in thermal insulation without requiring expensive raw materials, but also provide an effective way to comprehensively use coal gangue. Full article
(This article belongs to the Special Issue Advances in Aerogel Composites)
Show Figures

Figure 1

14 pages, 1335 KiB  
Article
Validation of a Gas Chromatography-Mass Spectrometry Method for the Measurement of the Redox State Metabolic Ratios Lactate/Pyruvate and ?-Hydroxybutyrate/Acetoacetate in Biological Samples
by Robin Wijngaard, Meritxell Perramón, Marina Parra-Robert, Susana Hidalgo, Gina Butrico, Manuel Morales-Ruiz, Muling Zeng, Eudald Casals, Wladimiro Jiménez, Guillermo Fernández-Varo, Gerald I. Shulman, Gary W. Cline and Gregori Casals
Int. J. Mol. Sci. 2021, 22(9), 4752; https://doi.org/10.3390/ijms22094752 - 30 Apr 2021
Cited by 11 | Viewed by 3284
Abstract
The metabolic ratios lactate/pyruvate and ?-hydroxybutyrate/acetoacetate are considered valuable tools to evaluate the in vivo redox cellular state by estimating the free NAD+/NADH in cytoplasm and mitochondria, respectively. The aim of the current study was to validate a gas-chromatography mass spectrometry method for [...] Read more.
The metabolic ratios lactate/pyruvate and ?-hydroxybutyrate/acetoacetate are considered valuable tools to evaluate the in vivo redox cellular state by estimating the free NAD+/NADH in cytoplasm and mitochondria, respectively. The aim of the current study was to validate a gas-chromatography mass spectrometry method for simultaneous determination of the four metabolites in plasma and liver tissue. The procedure included an o-phenylenediamine microwave-assisted derivatization, followed by liquid-liquid extraction with ethyl acetate and silylation with bis(trimethylsilyl)trifluoroacetamide:trimethylchlorosilane 99:1. The calibration curves presented acceptable linearity, with a limit of quantification of 0.001 mM for pyruvate, ?-hydroxybutyrate and acetoacetate and of 0.01 mM for lactate. The intra-day and inter-day accuracy and precision were within the European Medicines Agency’s Guideline specifications. No significant differences were observed in the slope coefficient of three-point standard metabolite-spiked curves in plasma or liver and water, and acceptable recoveries were obtained in the metabolite-spiked samples. Applicability of the method was tested in precision-cut liver rat slices and also in HepG2 cells incubated under different experimental conditions challenging the redox state. In conclusion, the validated method presented good sensitivity, specificity and reproducibility in the quantification of lactate/pyruvate and ?-hydroxybutyrate/acetate metabolites and may be useful in the evaluation of in vivo redox states. Full article
Show Figures

Figure 1

21 pages, 6678 KiB  
Article
Hydrophilic/Hydrophobic Silane Grafting on TiO2 Nanoparticles: Photocatalytic Paint for Atmospheric Cleaning
by Jong-Ho Kim, Sayed Mukit Hossain, Hui-Ju Kang, Heeju Park, Leonard Tijing, Geun Woo Park, Norihiro Suzuki, Akira Fujishima, Young-Si Jun, Ho Kyong Shon and Geon-Joong Kim
Catalysts 2021, 11(2), 193; https://doi.org/10.3390/catal11020193 - 2 Feb 2021
Cited by 19 | Viewed by 5463
Abstract
In this study, anatase titania was utilized to prepare a durable photocatalytic paint with substantially enhanced photoactivity towards NO oxidation. Consequently, to alleviate the choking effect of photocatalytic paint and incorporate self-cleaning properties, the parent anatase titania was modified with Al(OH)3 and [...] Read more.
In this study, anatase titania was utilized to prepare a durable photocatalytic paint with substantially enhanced photoactivity towards NO oxidation. Consequently, to alleviate the choking effect of photocatalytic paint and incorporate self-cleaning properties, the parent anatase titania was modified with Al(OH)3 and a number of organosilane (tetraethyl orthosilicate, propyltrimethoxysilane, triethoxy(octadecyl)silane, and trimethylchlorosilane) coatings. A facile hydrolysis approach in ethanol was employed to coat the parent titania. To facilitate uniform dispersion in photocatalytic paint and strong bonding with the prevailing organic matrix, it is necessary to avail both hydrophobic and hydrophilic regions on the titania surface. Therefore, during the preparation of modified titania, the weight proportion of the total weight of alkyl silane and trimethylchlorosilane was adjusted to a ratio of 1:1. As the parent titania has few hydrophilic portions on the surface, tetraethyl orthosilicate was coated with an organic silane having an extended alkyl group as a hydrophobic group and tetraethyl orthosilicate as a hydrophilic group. When these two silane mixtures are hydrolyzed simultaneously and coated on the surface of parent titania, a portion containing a large amount of tetraethyl orthosilicate becomes hydrophilic, and a part containing an alkyl silane becomes hydrophobic. The surface morphology and the modified titania’s optical attributes were assessed using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-Vis diffuse reflectance spectroscopy (DRS), and electrochemical impedance spectroscopy (EIS) analysis. Based on the advanced characterizations, the NO removal mechanism of the modified titania is reported. The modified titania coated at 20 wt.% on the ceramic substrate was found to remove ~18% of NO under one h of UV irradiation. An extensive UV durability test was also carried out, whereby the coated surface with modified titania was exposed to 350 W/m2 of UV irradiance for 2 weeks. The results indicated that the coated surface appeared to preserve the self-cleaning property even after oil spraying. Hence, facile hydrolysis of multiple organosilane in ethanol could be a viable approach to design the coating on anatase titania for the fabrication of durable photoactive paint. Full article
(This article belongs to the Special Issue Commemorative Issue in Honor of Professor Akira Fujishima)
Show Figures

Figure 1

Back to TopTop