In Answers Research Journal 7 (2014): 91-101
Modern genomics provides the ability to screen the DNA of a wide variety of organisms to scrutinize broken metabolic pathways. This wealth of data has revealed wide-spread genetic entropy in human and other genomes. Loss of the vitamin C pathway due to deletions in the GULO (L-gulonolactone oxidase) gene has been detected in humans, apes, guinea pigs, bats, mice, rats, pigs, and passerine birds. Contrary to the popularized claims of some evolutionists and neo-creationists, patterns of GULO degradation are taxonomically restricted and fail to support macroevolution. Current research and data reported here show that multiple GULO exon losses in human, chimpanzee, and gorilla occurred independently in each taxon and are associated with regions containing a wide variety of transposable element fragments. Thus, they are another example of sequence deletions occurring via unequal recombination associated with transposable element repeats. The 28,800 base human GULO region is only 84% and 87% identical compared to chimpanzee and gorilla, respectively. The 13,000 bases preceding the human GULO gene, which corresponds to the putative area of loss for at least two major exons, is only 68% and 73% identical to chimpanzee and gorilla, respectively. These DNA similarities are inconsistent with predictions of the common ancestry paradigm. Further, gorilla is considerably more similar to human in this region than chimpanzee—negating the inferred order of phylogeny. Taxonomically restricted gene degradation events are emerging as a common theme associated with genetic entropy and systematic discontinuity, not macroevolution.
Click here to read the full article text.