{\displaystyle \lim _{n\to \infty }{\frac {\int _{a}^{b}e^{nf(x)}\,dx}{e^{nf(x_{0})}{\sqrt {\frac {2\pi }{n(-f''(x_{0}))}}}}}\geq \lim _{n\to \infty }{\frac {1}{\sqrt {2\pi }}}\int _{-\delta {\sqrt {n(-f''(x_{0})+\varepsilon )}}}^{\delta {\sqrt {n(-f''(x_{0})+\varepsilon )}}}e^{-{\frac {1}{2}}y^{2}}\,dy\,\cdot {\sqrt {\frac {-f''(x_{0})}{-f''(x_{0})+\varepsilon }}}={\sqrt {\frac {-f''(x_{0})}{-f''(x_{0})+\varepsilon }}}}