Aller au contenu

Matrice unitaire

Un article de Wikipédia, l'encyclopédie libre.

En algèbre linéaire, une matrice carrée U à coefficients complexes est dite unitaire si elle vérifie les égalités :

où la matrice adjointe de U est notée U* (ou U en physique, et plus particulièrement en mécanique quantique) et I désigne la matrice identité.

L'ensemble des matrices unitaires de taille n forme le groupe unitaire U(n).

Les matrices unitaires carrées à coefficients réels sont les matrices orthogonales.

Propriétés

[modifier | modifier le code]

Toute matrice unitaire U vérifie les propriétés suivantes :

Propositions équivalentes

[modifier | modifier le code]

Soit U une matrice carrée de taille n à coefficients complexes ; les cinq propositions suivantes sont équivalentes :

Cas particuliers

[modifier | modifier le code]

Les matrices unités sont des matrices unitaires.

Référence

[modifier | modifier le code]
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Unitary matrix » (voir la liste des auteurs).

Bibliographie

[modifier | modifier le code]
  • Éric J. M. Delhez, Algèbre, vol. 1
  • Joseph Grifone, Algèbre linéaire, Cépaduès-Éditions,

Articles connexes

[modifier | modifier le code]