Cantellated 6-cubes
Appearance
6-cube |
Cantellated 6-cube |
Bicantellated 6-cube | |||||||||
6-orthoplex |
Cantellated 6-orthoplex |
Bicantellated 6-orthoplex | |||||||||
Cantitruncated 6-cube |
Bicantitruncated 6-cube |
Bicantitruncated 6-orthoplex |
Cantitruncated 6-orthoplex | ||||||||
Orthogonal projections in B6 Coxeter plane |
---|
In six-dimensional geometry, a cantellated 6-cube is a convex uniform 6-polytope, being a cantellation of the regular 6-cube.
There are 8 cantellations for the 6-cube, including truncations. Half of them are more easily constructed from the dual 5-orthoplex.
Cantellated 6-cube
[edit]Cantellated 6-cube | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | rr{4,3,3,3,3} or |
Coxeter-Dynkin diagrams | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 4800 |
Vertices | 960 |
Vertex figure | |
Coxeter groups | B6, [3,3,3,3,4] |
Properties | convex |
Alternate names
[edit]- Cantellated hexeract
- Small rhombated hexeract (acronym: srox) (Jonathan Bowers)[1]
Images
[edit]Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Bicantellated 6-cube
[edit]Cantellated 6-cube | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | 2rr{4,3,3,3,3} or |
Coxeter-Dynkin diagrams | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B6, [3,3,3,3,4] |
Properties | convex |
Alternate names
[edit]- Bicantellated hexeract
- Small birhombated hexeract (acronym: saborx) (Jonathan Bowers)[2]
Images
[edit]Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Cantitruncated 6-cube
[edit]Cantellated 6-cube | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | tr{4,3,3,3,3} or |
Coxeter-Dynkin diagrams | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B6, [3,3,3,3,4] |
Properties | convex |
Alternate names
[edit]- Cantitruncated hexeract
- Great rhombihexeract (acronym: grox) (Jonathan Bowers)[3]
Images
[edit]Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
It is fourth in a series of cantitruncated hypercubes:
Truncated cuboctahedron | Cantitruncated tesseract | Cantitruncated 5-cube | Cantitruncated 6-cube | Cantitruncated 7-cube | Cantitruncated 8-cube |
Bicantitruncated 6-cube
[edit]Cantellated 6-cube | |
---|---|
Type | uniform 6-polytope |
Schläfli symbol | 2tr{4,3,3,3,3} or |
Coxeter-Dynkin diagrams | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B6, [3,3,3,3,4] |
Properties | convex |
Alternate names
[edit]- Bicantitruncated hexeract
- Great birhombihexeract (acronym: gaborx) (Jonathan Bowers)[4]
Images
[edit]Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Related polytopes
[edit]These polytopes are part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
Notes
[edit]References
[edit]- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "6D uniform polytopes (polypeta)". o3o3o3x3o4x - srox, o3o3x3o3x4o - saborx, o3o3o3x3x4x - grox, o3o3x3x3x4o - gaborx