Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders

Abstract

The origin of extant amphibians (Lissamphibia: frogs, salamanders and caecilians) is one of the most controversial questions in vertebrate evolution, owing to large morphological and temporal gaps in the fossil record1,2,3. Current discussions focus on three competing hypotheses: a monophyletic origin within either Temnospondyli4,5,6,7 or Lepospondyli8,9,10, or a polyphyletic origin with frogs and salamanders arising among temnospondyls and caecilians among the lepospondyls11,12,13,14,15,16. Recent molecular analyses are also controversial, with estimations for the batrachian (frog–salamander) divergence significantly older than the palaeontological evidence supports17,18. Here we report the discovery of an amphibamid temnospondyl from the Early Permian of Texas that bridges the gap between other Palaeozoic amphibians and the earliest known salientians19,20 and caudatans21 from the Mesozoic. The presence of a mosaic of salientian and caudatan characters in this small fossil makes it a key taxon close to the batrachian (frog and salamander) divergence. Phylogenetic analysis suggests that the batrachian divergence occurred in the Middle Permian, rather than the late Carboniferous as recently estimated using molecular clocks18,22, but the divergence with caecilians corresponds to the deep split between temnospondyls and lepospondyls, which is congruent with the molecular estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gerobatrachus hottoni , gen. et sp. nov., holotype specimen USNM 489135.
Figure 2: Gerobatrachus hottoni , gen. et sp. nov., holotype specimen USNM 489135.
Figure 3: Gerobatrachus hottoni , gen. et sp. nov., holotype specimen USNM 489135.
Figure 4: Majority rule consensus tree of 131 most parsimonious trees.

Similar content being viewed by others

References

  1. Milner, A. R. in The Phylogeny and Classification of the Tetrapods (ed. Benton, M. J.) Vol. 1, Amphibians, Reptiles, Birds 59–102 (Clarendon Press, Oxford, 1988)

    Google Scholar 

  2. Milner, A. R. The Paleozoic relatives of lissamphibians. Herpetol. Monogr. 7, 8–27 (1993)

    Article  Google Scholar 

  3. Schoch, R. R. & Milner, A. R. in Recent Advances in the Origin and Early Radiation of Vertebrates (eds Arratia, G., Wilson, M. V. H. & Cloutier, R.) 345–377 (Verlag Dr. Fredrich Pfeil, München, 2004)

    Google Scholar 

  4. Bolt, J. R. in Origins of the Higher Groups of Tetrapods: Controversy and Consensus (eds Schultze, H.-P. & Trueb, L.) 194–222 (Comstock Publishing Associates, Ithaca, 1991)

    Google Scholar 

  5. Ruta, M. & Coates, M. I. Dates, nodes and character conflict: Addressing the lissamphibian origin problem. J. Syst. Palaeontol. 5, 69–122 (2007)

    Article  Google Scholar 

  6. Ruta, M., Coates, M. I. & Quicke, D. L. Early tetrapod relationships revisited. Biol. Rev. 78, 251–345 (2003)

    Article  Google Scholar 

  7. Trueb, L. & Cloutier, R. in Origins of the Higher Groups of Tetrapods: Controversy and Consensus (eds Schultze, H.-P. & Trueb, L.) 174–193 (Comstock Publishing Associates, Ithaca, 1991)

    Google Scholar 

  8. Laurin, M. & Reisz, R. R. in Amniote Origins (eds Sumida, S. S. & Martin, K. L. M.) 9–59 (Academic, San Diego, 1997)

    Book  Google Scholar 

  9. Vallin, G. & Laurin, M. Cranial morphology and affinities of Microbrachis, and a reappraisal of the phylogeny and lifestyle of the first amphibians. J. Vertebr. Paleontol. 24, 56–72 (2004)

    Article  Google Scholar 

  10. Laurin, M. The importance of global parsimony and historical bias in understanding tetrapod evolution. Part I. Systematics, middle ear evolution and jaw suspension. Ann. Sci. Nat. Paris 1, 1–42 (1998)

    Google Scholar 

  11. Anderson, J. S. The phylogenetic trunk: Maximal inclusion of taxa with missing data in an analysis of the Lepospondyli. Syst. Biol. 50, 170–193 (2001)

    Article  CAS  Google Scholar 

  12. Anderson, J. S. in Major Transitions in Vertebrate Evolution (eds Anderson, J. S. & Sues, H.-D.) 182–227 (Indiana Univ. Press, Bloomington, 2007)

    Google Scholar 

  13. Carroll, R. L. in Amphibian Biology (eds Heatwole, H. & Carroll, R. L.) Vol. 4, Palaeontology: The Evolutionary History of Amphibians 1402–1411 (Surrey Beatty and Sons, Chipping Norton, Australia, 2000)

    Google Scholar 

  14. Carroll, R. L. The importance of branchiosaurs in determining the ancestry of the modern amphibian orders. Neues Jb. Geol. Palaontol. Abh. 232, 157–180 (2004)

    Google Scholar 

  15. Carroll, R. L. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zool. J. Linn. Soc. 150 (s1). 1–140 (2007)

    Article  Google Scholar 

  16. Carroll, R. L. & Currie, P. J. Microsaurs as possible apodan ancestors. Zool. J. Linn. Soc. 57, 229–247 (1975)

    Article  Google Scholar 

  17. San Mauro, D. et al. Initial diversification of living amphibians predated the breakup of Pangaea. Am. Nat. 165, 590–599 (2005)

    Article  Google Scholar 

  18. Zhang, P. et al. Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst. Biol. 54, 391–400 (2005)

    Article  Google Scholar 

  19. Piveteau, J. Paléontologie de Madagascar. XXIII. Un Amphibien du Trias inferieur. Ann. Paléontol. 26, 135–177 (1937)

    Google Scholar 

  20. Rage, J.-C. & Roček, Z. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the Early Triassic. Palaeontographica A 206, 1–16 (1989)

    Google Scholar 

  21. Ivachnenko, M. F. Urodelians from the Triassic and Jurassic of Soviet Central Asia. Paleontol. J. 12, 362–368 (1978)

    Google Scholar 

  22. San Mauro, D. et al. Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Mol. Phylogenet. Evol. 33, 413–427 (2004)

    Article  CAS  Google Scholar 

  23. Duellman, W. E. & Trueb, L. Biology of Amphibians 2nd edn (The Johns Hopkins Univ. Press, Baltimore, 1994)

    Google Scholar 

  24. Trueb, L. in The Skull (eds Hanken, J. & Hall, B. K.) Vol. 2, Patterns of Structural and Systematic Diversity 255–343 (Univ. Chicago Press, Chicago, 1993),

    Google Scholar 

  25. Gao, K.-Q. & Shubin, N. H. Earliest known crown-group salamanders. Nature 422, 424–428 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Wang, Y. A new Mesozoic caudate (Liaoxitriton dauhugouensis sp. nov.) from Inner Mongolia, China. Chin. Sci. Bull. 49, 858–860 (2004)

    Article  Google Scholar 

  27. Shubin, N. H. & Wake, D. B. in Amphibian Biology (eds Heatwole, H. & Davies, M.) Vol. 5, Osteology 1782–1808 (Surrey Beatty and Sons, Chipping Norton, Australia, 2003)

    Google Scholar 

  28. Fröbisch, N. B., Carroll, R. L. & Schoch, R. R. Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development. Evol. Dev. 9, 69–75 (2007)

    Article  Google Scholar 

  29. Anderson, J. S. et al. Georgenthalia clavinasica, a new genus and species of dissorophoid temnospondyl from the Early Permian of Germany, and the relationships of the Family Amphibamidae. J. Vertebr. Paleontol. 28, 61–75 (2008)

    Article  Google Scholar 

  30. Lee, M. S. Y. & Anderson, J. S. Molecular clocks and the origin(s) of modern amphibians. Mol. Phylogenet. Evol. 40, 635–639 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Carrano, D. Chaney, B. DiMichele and P. Kroehler of the USNM for information and photographs of the discovery locality and for access to the specimen. E. Rega transported the specimen from Washington DC to Los Angeles. We thank P. Janvier and le Museum National d’Histoire Naturelle in Paris for support while one of us (J.S.A.) studied the holotype of Triadobatrachus. The research was further supported by Natural Science and Engineering Research Council of Canada Discovery Grants to R.R.R. and J.S.A.

Author Contributions J.S.A. contributed to project planning, figure preparation, anatomical analysis, phylogenetic analysis, manuscript preparation and financial support for study; R.R.R. to phylogenetic analysis, manuscript preparation and financial support; D.S. to specimen preparation, figure preparation, anatomical analysis and manuscript preparation; N.B.F. to anatomical analysis, phylogenetic analysis and manuscript preparation; and S.S.S. to project initiation and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Anderson.

Supplementary information

Supplementary information

The file contains Supplementary Data including the data matrix in Nexsus format saved in Rich Text. (RTF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J., Reisz, R., Scott, D. et al. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 453, 515–518 (2008). https://doi.org/10.1038/nature06865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing