Un (del grec ἰών, 'ió') és una partícula carregada elèctricament constituïda per un àtom o molècula que no és elèctricament neutre. Conceptualment, això es pot entendre com que, a partir d'un estat neutre d'un àtom o molècula, s'han guanyat o perdut electrons, aquest fenomen es coneix com a ionització.

Infotaula de partículaIó (àtom)
Classificaciópartícula carregada i entitat molecular Modifica el valor a Wikidata
Enllaç iònic entre el liti (que es converteix en un catió), i el fluor, que es converteix en un anió

Quan un àtom perd o guanya electrons, l'espècie formada és un ió i porta una càrrega elèctrica neta. Com que l'electró té càrrega negativa, quan s'afegeixen un o més electrons a un àtom elèctricament neutre, es forma un ió carregat negativament. En perdre electrons es produeix un ió carregat positivament. El nombre de protons no canvia quan un àtom es converteix en un ió.

Els ions carregats negativament, produïts en haver-hi més electrons que protons, es coneixen com a anions[1] (que són atrets per l'ànode) i els carregats positivament, conseqüència d'una pèrdua d'electrons, es coneixen com a cations (els que són atrets pel càtode).

Variants

modifica

Anió i catió signifiquen:

  • Anió ('el que va cap amunt') té càrrega elèctrica negativa.
  • Catió ('el que va cap avall') té càrrega elèctrica positiva.

Unes definicions més formals són: Un catió és una espècie monoatòmica o poliatòmica que té una o més càrregues elementals del protó. Un anió és una espècie monoatòmica o poliatòmica que té una o més càrregues elementals de l'electró.

Ànode i càtode utilitzen el sufix '-ode', del grec -ots (-οδος), que significa 'camí' o 'via'.

Ànode: ('camí ascendent del corrent elèctric'). És el lloc on es produeix la reacció d'oxidació, que provoca un augment de l'estat d'oxidació.

Càtode: ('camí descendent del corrent elèctric'). És el lloc on es produeix la reacció de reducció que provoca una disminució de l'estat d'oxidació.

Un ió conformat per un sol àtom s'anomena ió monoatòmic, a diferència d'un conformat per dos o més àtoms, que s'anomena ió poliatòmic.

Element Primer Segon Tercer Quart Cinquè Sisè Setè
Na 496 4560
Mg 738 1450 7730
Al 577 1816 2744 11600
Si 786 1577 3228 4354 16100
P 1060 1890 2905 4950 6270 21200
S 999 2260 3375 4565 6950 8490 11000
Cl 1256 2295 3850 5160 6560 9360 11000
Ar 1520 2665 3945 5770 7230 8780 12,000
Energies de ionització successives en kJ/mol

Energia d'ionització

modifica

L'energia d'ionització, també anomenada potencial d'ionització, és l'energia que cal subministrar a un àtom neutre, gasós i en estat fonamental, per a arrencar-li l'electró més feble retingut.[2]

X + 1a energia de ionització → X+ + e-

L'energia necessària per arrencar un segon electró es diu segona energia d'ionització. Així es pot deduir el significat de la tercera energia d'ionització i de les posteriors.

XX+ + 2a energia de ionització → X2+ + e-[3]

L'energia d'ionització s'expressa en electró-volt, joules o en quilojoules per mol (kJ / mol).

1 eV = 1,6.10−19 coulombs × 1 volt = 1,6.10−19 joules[4]

En els elements d'una mateixa família o grup l'energia d'ionització disminueix a mesura que augmenta el nombre atòmic, és a dir, de dalt a baix.

En els alcalins, per exemple, l'element de major potencial de ionització és el liti i el de menor el franci.[5] Això és fàcil d'explicar, ja que en descendir en el grup l'últim electró se situa en orbitals cada vegada més allunyats del nucli i, a més, els electrons de les capes interiors exerceixen un efecte d'apantallament enfront de l'atracció nuclear sobre els electrons perifèrics pel que resulta més fàcil extreure'ls.

En els elements d'un mateix període, l'energia d'ionització creix a mesura que augmenta el nombre atòmic, és a dir, d'esquerra a dreta.

Això es deu al fet que l'electró diferenciador està situat al mateix nivell energètic, mentre que la càrrega del nucli augmenta, de manera que serà més gran la força d'atracció i, d'altra banda, el nombre de capes interiors no varia i l'efecte d'apantallament no augmenta.

No obstant això, l'augment no és continu, ja que en el cas del beril·li i el nitrogen s'obtenen valors més alts que el que podia esperar-se per comparació amb els altres elements del mateix període. Aquest augment es deu a l'estabilitat que presenten les configuracions s2 i s2p3, respectivament.

L'energia d'ionització més elevada correspon als gasos nobles, ja que la seva configuració electrònica és la més estable, i per tant caldrà proporcionar més energia per arrencar un electró.[6]

Classes d'ions

modifica

Article principal: Anió

En els ions negatius, anions, cada electró, de l'àtom originalment carregat, està fortament retingut per la càrrega positiva del nucli. Al contrari que els altres electrons de l'àtom, en els ions negatius, l'electró addicional no està vinculat al nucli per forces de Coulomb, ho està per la polarització de l'àtom neutre. A causa del curt rang d'aquesta interacció, els ions negatius no presenten sèries de Rydberg. Un àtom de Rydberg és un àtom amb un o més electrons que té un nombre quàntic principal molt elevat.

Cations

modifica

Article principal: Catió

Els cations són ions positius. Són especialment freqüents i importants els que formen la major part dels metalls. Són àtoms que han perdut electrons.

Altres ions

modifica
  • Un dianió és una espècie que té dues càrregues negatives sobre ella.[7] Per exemple: el Dianió de pentalè és aromàtic.
  • Un zwitterió és un ió amb una càrrega neta igual a zero, però que presenta dues càrregues aïllades sobre la mateixa espècie, una positiva i una altra negativa i, per tant, és neutre.[8]
  • Els radicals iònics són ions que contenen un nombre irregular d'electrons[9] i presenten una forta inestabilitat i reactivitat.

Article principal: Plasma

S'anomena plasma a un fluid gasós d'ions. Fins i tot, es pot parlar de plasma en mostres de gas corrent que continguin una proporció apreciable de partícules carregades. Es pot considerar a un plasma com un nou estat de la matèria (a part dels estats sòlid, líquid i gasós), concretament el quart estat de la matèria, ja que les seves propietats són molt diferents dels estats usuals. Els plasmes dels cossos estel·lars contenen, de manera predominant, una barreja d'electrons i protons, i s'estima que la seva proporció és del 99,9 % de l'Univers visible.[10]

Algunes aplicacions dels ions

modifica

Els ions són essencials per a la vida. Els ions sodi, potassi, calci i altres tenen un paper important en la biologia cel·lular dels organismes vius, en particular en les membranes cel·lulars. Hi ha multitud d'aplicacions basades en l'ús de ions i cada dia es descobreixen més, dels detectors de fum fins a motors iònics.

Els ions inorgànics dissolts són un component dels sòlids (sòlids totals dissolts) presents en l'aigua i indiquen la qualitat d'aquesta.

Ions freqüents

modifica
Cations freqüents
Nom comú Fórmula Nom tradicional
Cations simples
Alumini Al3+ Alumini
Bari Ba2+ Bari
Beril·li Be2+ Beril·li
Cesi Cs+ Cesi
Calci Ca2+ Calci
Crom (II) Cr2+ Cromós
Crom (III) Cr3+ Cròmic
Crom (VI) Cr6+ Percròmic
Cobalt (II) Co2+ Cobaltós
Cobalt (III) Co3+ Cobàltic
Coure (I) Cu+ Cuprós
Coure (II) Cu2+ Cúpric
Gal·li Ga3+ Gal·li
Heli He2+ (partícula α)
Hidrogen H+ (Protó)
Ferro (II) Fe2+ Ferrós
Ferro (III) Fe3+ Fèrric
Plom (II) Pb2+ Plumbós
Plom (IV) Pb4+ Plúmbic
Liti Li+ Liti
Magnesi Mg2+ Magnesi
Manganès (II) Mn2+ Hipomanganós
Manganès (III) Mn3+ Manganós
Manganès (IV) Mn4+ Mangànic
Manganès (VII) Mn7+ Permangànic
Mercuri (II) Hg2+ Mercúric
Níquel (II) Ni2+ Niquelós
Níquel (III) Ni3+ Niquélic
Potasi K+ Potasi
Plata Ag+ Argèntic
Sodi Na+ Sodi
Estronci Sr2+ Estronci
Estany (II) Sn2+ Estanós
Estany (IV) Sn4+ Estànic
Zinc Zn2+ Zinc
Cations poliatòmics
Amoni NH4+
Hidroni o Oxoni H3O+
Nitroni NO2+
Mercuri (I) Hg22+ Mercuriós
Anions freqüents
Nom formal Fórmula Nom alternatiu
Anions simples
Arsenur As3−
Azida N3
Bromur Br
Carbur C4−
Clorur Cl
Fluorur F
Fosfur P3−
Hidrur H
Nitrur N3−
Òxid O2−
Peròxid O22−
Sulfur S2−
Iodur I
Oxoanions
Arseniat AsO43−
Arsenit AsO33−
Borat BO33−
Bromat BrO3
Hipobromit BrO
Carbonat CO32−
Hidrogenocarbonat HCO3 Bicarbonat
Clorat ClO3
Perclorat ClO4
Clorit ClO2
Hipoclorit ClO
Cromat CrO42−
Dicromat Cr2O72−
Iodat IO3
Nitrat NO3
Nitrit NO2
Fosfat PO43−
Hidrogenofosfat HPO42−
Dihidrogenofosfat H2PO4
Permanganat MnO4
Fosfit PO33−
Sulfat SO42−
Tiosulfat S2O32−
Hidrogenosulfat HSO4 Bisulfat
Sulfit SO32−
Hidrogenosulfit HSO3 Bisulfit
Silicat SiO4−4
Anions d'àcids orgànics
Acetat C2H3O2
Format HCO2
Oxalat C2O42−
Hidrogenoxalat HC2O4 Bioxalat
Altres anions
Hidrogenosulfur HS Bisulfur
Tel·lurur Te2−
Amidur NH2
Cianat OCN
Tiocianat SCN
Cianur CN
Hidròxid OH

Referències

modifica
  1. «Ió (àtom)». Gran Enciclopèdia Catalana. Barcelona: Grup Enciclopèdia Catalana.
  2. Gispert, Jaume Casabó i. Estructura atómica y enlace químico. Reverte. 
  3. Arnedo, Mara Mercedes Bautista. Nociones esenciales de química para ciencias de la vida. Lulu.com. 
  4. Química I. EUNED. 
  5. Química I. EUNED. 
  6. Reboiras, M. D.. Química: la ciencia básica. Editorial Paraninfo. 
  7. Llamas, Edmundo. 300 preguntas intensivas 2017. Lulu.com. 
  8. Devlin, Thomas M. Bioquímica: libro de texto con aplicaciones clínicas. Reverte. 
  9. Allinger, Norman L. Química orgánica. Reverte. 
  10. “Plasma, plasma, everywere” Arxivat 2006-març-16 a la Wayback Machine., en Space Science n.º 158, 7 de septiembre de 1999. así es como la secuencia la tiene cc-by-sa 3.0.

Bibliografia

modifica

Vegeu també

modifica